This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350870 #29 Jul 27 2024 23:53:35 %S A350870 81,2025,3025,494209,24502500,25502500,52881984,60481729,6049417284, %T A350870 6832014336,101558217124,108878221089,123448227904,127194229449, %U A350870 152344237969,213018248521,217930248900,249500250000,250500250000,284270248900,289940248521,371718237969,413908229449,420744227904 %N A350870 Numbers k = x.y such that x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. %C A350870 Problem proposed on French site Diophante (see link). %C A350870 We have to solve Diophantine equation (x+y)^2 = x*10^m + y where m = length(x) = length(y). %C A350870 Squares of a variant of Kaprekar numbers (A045913). %C A350870 Number of solutions with 2*m digits for m >= 1: 1, 2, 1, 4, 2, 21, ... %C A350870 Compare with A347541 where x*y divides x.y, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. %H A350870 Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a1-pot-pourri/1024-a1945-concatenations-en-tous-genres">A1945 - Concaténations en tous genres</a> (in French). %F A350870 a(n) = A045913(n+1)^2. %e A350870 81 = (8+1)^2, hence 81 is a term. %e A350870 3025 = (30+25)^2, hence 3025 is another term. %o A350870 (PARI) upto(n) = {i = 4; i2 = i^2; res = List(); while(i2 <= n, i++; i2 = i^2; if(#digits(i2) % 2 == 1, i = sqrtint(10^(#digits(i2))) + 1; i2 = i^2; ); if(is(i2), listput(res, i2) ); ); res } %o A350870 is(n) = { my(d = digits(n), d1, d2, frd2); if(#d % 2 == 1, return(0)); d1 = vector(#d \ 2, i, d[i]); d2 = vector(#d \ 2, i, d[i + #d \ 2]); frd2 = fromdigits(d2); 10^(#d \ 2 - 1) <= frd2 && (fromdigits(d1) + frd2)^2 == n } \\ _David A. Corneth_, Jan 21 2022 %Y A350870 Equals A238237 \ A350918. %Y A350870 Subsequence of A102766. %Y A350870 Subsequences: A038544, A350869. %Y A350870 Cf. A045913, A347541. %K A350870 nonn,base %O A350870 1,1 %A A350870 _Bernard Schott_, Jan 20 2022