This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350878 #60 Mar 09 2022 00:42:47 %S A350878 1,2,5,10,18,24,32,60,71,100,512,2990,9910,10031,12618,32674,53586, %T A350878 153878,223500,312608,369119,386110,466569,4491817,7068356,8765871, %U A350878 65311881 %N A350878 Integers m that divide the sum of values d*p < m, where d is a divisor of m, p is a prime, and d*p does not divide m. %C A350878 Conjecture: The sum of values d*p < m in the definition of the sequence is equal to m for m = 5 only. True for m <= 15000. %C A350878 A007506 is the subsequence of the prime terms of this sequence. - _Amiram Eldar_, Jan 20 2022 %C A350878 a(28) > 10^8. - _David A. Corneth_, Jan 21 2022 %H A350878 David A. Corneth, <a href="/A350878/a350878.gp.txt">PARI program</a> %H A350878 Jon E. Schoenfield, <a href="/A350878/a350878.txt">Magma program</a> %t A350878 q[n_] := Module[{ds = Divisors[n], s = 0, r}, Do[r = n/d; ps = Select[Range[2, r], PrimeQ[#] && ! Divisible[n, d*#] &]; s += Total[d*ps], {d, ds}]; Divisible[s, n]]; Select[Range[3000], q] (* _Amiram Eldar_, Jan 20 2022 *) %o A350878 (Python) %o A350878 import sympy %o A350878 A350878=[] %o A350878 for m in range(1,15001): %o A350878 sum=0 %o A350878 primes_lessthan_m_by2 = list(sympy.primerange(2,-(m//-2))) %o A350878 primes_between_m_by2_and_m = list(sympy.primerange(m//2+1,m)) %o A350878 divisors_of_m=sympy.divisors(m,generator=False) %o A350878 divisors_of_m.remove(m) %o A350878 if m%2==0: %o A350878 divisors_of_m.remove(m//2) %o A350878 for p in primes_between_m_by2_and_m: %o A350878 sum+=p %o A350878 for p in primes_lessthan_m_by2: %o A350878 for d in divisors_of_m: %o A350878 if p< m//d and m%(d*p)!=0: %o A350878 sum+=d*p %o A350878 if sum%m==0: %o A350878 A350878.append(m) %o A350878 print(A350878) %o A350878 (PARI) isok(m) = {my(d=divisors(m), s=0); forprime(p=2, m, for(k=1, #d, my(x=d[k]*p); if ((x < m) && (m % x), s+=x););); (s % m) == 0;} \\ _Michel Marcus_, Jan 21 2022 %o A350878 (PARI) \\ See Corneth link \\ _David A. Corneth_, Jan 21 2022 %Y A350878 Cf. A334800, A000040, A007506. %K A350878 nonn,more %O A350878 1,2 %A A350878 _Devansh Singh_, Jan 20 2022 %E A350878 a(16)-a(20) from _Amiram Eldar_, Jan 21 2022 %E A350878 a(21)-a(27) from _David A. Corneth_, Jan 21 2022