This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350890 #25 May 06 2023 11:12:45 %S A350890 1,0,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0, %T A350890 0,1,2,1,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,1,3,1, %U A350890 1,0,0,0,0,0,0,0,0,1,4,1,1,0,0,0,0,0,0,0,0,0,1,4,1,1,0,0,0,0,0,0,0,0,0,0,1 %N A350890 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that (smallest part) = k*(number of parts). %C A350890 Column k is asymptotic to (1 - alfa) * exp(2*sqrt(n*(k*log(alfa)^2 + polylog(2, 1 - alfa)))) * (k*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(alfa + 2*k - 2*alfa*k) * n^(3/4)), where alfa is positive real root of the equation alfa^(2*k) + alfa - 1 = 0. - _Vaclav Kotesovec_, Jan 21 2022 %H A350890 Andrew Howroyd, <a href="/A350890/b350890.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50). %F A350890 G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..i-1} (1-x^j). %e A350890 Triangle begins: %e A350890 1; %e A350890 0, 1; %e A350890 0, 0, 1; %e A350890 1, 0, 0, 1; %e A350890 1, 0, 0, 0, 1; %e A350890 1, 0, 0, 0, 0, 1; %e A350890 1, 0, 0, 0, 0, 0, 1; %e A350890 1, 1, 0, 0, 0, 0, 0, 1; %e A350890 2, 1, 0, 0, 0, 0, 0, 0, 1; %e A350890 2, 1, 0, 0, 0, 0, 0, 0, 0, 1; %e A350890 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; %o A350890 (PARI) T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, i-1, 1-x^j+x*O(x^n))), n); %o A350890 (Ruby) %o A350890 def partition(n, min, max) %o A350890 return [[]] if n == 0 %o A350890 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} %o A350890 end %o A350890 def A(n) %o A350890 a = Array.new(n, 0) %o A350890 partition(n, 1, n).each{|ary| %o A350890 (1..n).each{|i| %o A350890 a[i - 1] += 1 if ary[-1] == i * ary.size %o A350890 } %o A350890 } %o A350890 a %o A350890 end %o A350890 def A350890(n) %o A350890 (1..n).map{|i| A(i)}.flatten %o A350890 end %o A350890 p A350890(14) %Y A350890 Row sums give A168656. %Y A350890 Column k=1..5 give A006141, A350893, A350894, A350898, A350899. %Y A350890 Cf. A350879, A350889. %K A350890 nonn,tabl %O A350890 1,37 %A A350890 _Seiichi Manyama_, Jan 21 2022