cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350894 Number of partitions of n such that (smallest part) = 3*(number of parts).

This page as a plain text file.
%I A350894 #19 Jan 24 2022 09:13:45
%S A350894 0,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,4,5,5,
%T A350894 6,6,7,7,8,8,9,9,10,10,11,11,12,13,14,15,17,18,20,22,24,26,29,31,34,
%U A350894 37,40,43,47,50,54,58,62,66,71,75,80,85,90,95,102,107,114,121,129,136,146,154,165,175,187,198,213
%N A350894 Number of partitions of n such that (smallest part) = 3*(number of parts).
%H A350894 Vaclav Kotesovec, <a href="/A350894/b350894.txt">Table of n, a(n) for n = 1..10000</a>
%F A350894 G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..k-1} (1-x^j).
%F A350894 a(n) ~ (1 - alfa) * exp(2*sqrt(n*(3*log(alfa)^2 + polylog(2, 1 - alfa)))) * (3*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(6 - 5*alfa) * n^(3/4)), where alfa = 0.7780895986786010978806823096592944458720784440255... is positive real root of the equation alfa^6 + alfa - 1 = 0. - _Vaclav Kotesovec_, Jan 22 2022
%o A350894 (PARI) my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, k-1, 1-x^j))))
%Y A350894 Column 3 of A350890.
%Y A350894 Cf. A168656, A237756.
%K A350894 nonn
%O A350894 1,27
%A A350894 _Seiichi Manyama_, Jan 21 2022