This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350900 #13 May 24 2024 11:58:43 %S A350900 1,3,2,5,5,3,8,5,8,4,9,9,9,9,5,15,10,9,10,15,6,13,13,13,13,13,13,7,20, %T A350900 12,20,9,20,12,20,8,21,21,11,21,21,11,21,21,9,27,18,27,18,15,18,27,18, %U A350900 27,10,21,21,21,21,21,21,21,21,21,21,11,40,25,24,20,40,15,40,20,24,25,40,12 %N A350900 Triangle read by rows: T(n, k) = Sum_{i=1..n} gcd(i,n) / gcd(gcd(i,k),n) for 1 <= k <= n. %C A350900 Subtriangle (triangle without main diagonal) is symmetrical. %C A350900 Conjecture: Let f be an arbitrary arithmetic function. Define for n > 0 the sequence a(f; n) = Sum_{i=1..n, k=1..n} f(gcd(i,n)/gcd(gcd(i,k),n)); a(f; n) equals Dirichlet convolution of f(n)*A000010(n) and A057660(n); if f is multiplicative, then a(f; n) is multiplicative; row sums of this triangle use f(n) = n (see formula section). %F A350900 T(n, 1) = A018804(n); T(n, n) = n. %F A350900 T(n, k) = T(n, n-k) for 1 <= k < n. %F A350900 Conjecture: Row sums equal Dirichlet convolution of A002618 and A057660. %e A350900 The triangle T(n, k) for 1 <= k <= n starts: %e A350900 n \k : 1 2 3 4 5 6 7 8 9 10 11 12 %e A350900 ====================================================== %e A350900 1 : 1 %e A350900 2 : 3 2 %e A350900 3 : 5 5 3 %e A350900 4 : 8 5 8 4 %e A350900 5 : 9 9 9 9 5 %e A350900 6 : 15 10 9 10 15 6 %e A350900 7 : 13 13 13 13 13 13 7 %e A350900 8 : 20 12 20 9 20 12 20 8 %e A350900 9 : 21 21 11 21 21 11 21 21 9 %e A350900 10 : 27 18 27 18 15 18 27 18 27 10 %e A350900 11 : 21 21 21 21 21 21 21 21 21 21 11 %e A350900 12 : 40 25 24 20 40 15 40 20 24 25 40 12 %e A350900 etc. %o A350900 (PARI) T(n, k) = sum(i=1, n, gcd(i,n) / gcd(gcd(i,k),n)); %o A350900 row(n) = vector(n, k, T(n,k)); \\ _Michel Marcus_, Jan 22 2022 %Y A350900 Row sums gives A373059. %Y A350900 Cf. A000010, A002618, A018804, A057660, A050873. %K A350900 nonn,easy,tabl %O A350900 1,2 %A A350900 _Werner Schulte_, Jan 21 2022