A350901 a(n) = F(n) * (2*F(n-1)^2 + (-1)^(n-1)) * (2*F(n)^2 + (-1)^n), where F(n) is the n-th Fibonacci number.
0, 1, 3, 42, 399, 4655, 50568, 565149, 6248991, 69380842, 769112355, 8530996299, 94604226192, 1049202243593, 11635724020011, 129042610760010, 1431102560300007, 15871178746661911, 176014035001069464, 1952025706821035013, 21648296204009443815, 240083286518079466826
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..300
- Richard André-Jeannin, Problem H-450, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 29, No. 1 (1991), p. 89; Comparable, Solution to Problem H-450 by Paul S. Bruckman, ibid., Vol. 30, No. 2 (1992), pp. 191-192.
- Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).
Programs
-
Mathematica
a[n_] := Fibonacci[n]*(2*Fibonacci[n - 1]^2 + (-1)^(n - 1))*(2*Fibonacci[n]^2 + (-1)^n); Array[a, 25, 0] (* or *) LinearRecurrence[{8, 40, -60, -40, 8, 1}, {0, 1, 3, 42, 399, 4655}, 25]
Comments