This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350909 #7 Jan 29 2022 22:31:28 %S A350909 1,0,2,0,0,12,6,0,0,0,128,186,108,24,0,0,0,0,2000,5640,7840,6540,3330, %T A350909 960,120,0,0,0,0,0,41472,189480,456720,730830,832370,690300,416160, %U A350909 178230,51480,9000,720,0,0,0,0,0,0,1075648,7178640,26035800,65339820 %N A350909 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n labeled nodes with k arcs, k=0..n*(n-1). %H A350909 Andrew Howroyd, <a href="/A350909/b350909.txt">Table of n, a(n) for n = 1..1350</a> (rows 1..20) %e A350909 Triangle begins: %e A350909 [1] 1; %e A350909 [2] 0, 2; %e A350909 [3] 0, 0, 12, 6; %e A350909 [4] 0, 0, 0, 128, 186, 108, 24; %e A350909 [5] 0, 0, 0, 0, 2000, 5640, 7840, 6540, 3330, 960, 120; %e A350909 ... %o A350909 (PARI) %o A350909 G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*(1+y)^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)} %o A350909 row(n)={Vecrev(n!*polcoef(log(G(n)), n))} %o A350909 { for(n=1, 6, print(row(n))) } %Y A350909 Row sums are A082402. %Y A350909 Leading diagonal is A097629. %Y A350909 The unlabeled version is A350449. %Y A350909 Cf. A057273, A062735, A081064. %K A350909 nonn,tabf %O A350909 1,3 %A A350909 _Andrew Howroyd_, Jan 29 2022