cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350920 a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.

This page as a plain text file.
%I A350920 #8 Jan 22 2022 19:41:50
%S A350920 5,5,11,35,125,461,1715,6395,23861,89045,332315,1240211,4628525,
%T A350920 17273885,64467011,240594155,897909605,3351044261,12506267435,
%U A350920 46674025475,174189834461,650085312365,2426151414995,9054520347611,33791929975445,126113199554165,470660868241211,1756530273410675,6555460225401485,24465310628195261,91305782287379555
%N A350920 a(0) = 5, a(1) = 5, and a(n) = 4*a(n-1) - a(n-2) - 4 for n >= 2.
%C A350920 One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
%H A350920 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5,1).
%F A350920 a(n) = 3*A001835(n) + 2. - _Hugo Pfoertner_, Jan 22 2022
%F A350920 G.f.: (5 - 20*x + 11*x^2)/((1 - x)*(1 - 4*x + x^2)). - _Stefano Spezia_, Jan 22 2022
%Y A350920 Cf. A001835, A350916.
%Y A350920 Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350921, A350922, A350923, A350924, A350925, A350926.
%K A350920 nonn,easy
%O A350920 0,1
%A A350920 _Max Alekseyev_, Jan 22 2022