This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350924 #15 Jan 08 2023 13:00:20 %S A350924 1,3,43,681,10849,172899,2755531,43915593,699893953,11154387651, %T A350924 177770308459,2833170547689,45152958454561,719614164725283, %U A350924 11468673677149963,182779164669674121,2912997961037635969,46425188211932501379,739890013429882386091,11791815026666185676073 %N A350924 a(0) = 1, a(1) = 3, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2. %C A350924 One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916. %H A350924 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1). %F A350924 G.f.: (1 - 14*x + 9*x^2)/((1 - x)*(1 - 16*x + x^2)). - _Stefano Spezia_, Jan 22 2022 %F A350924 7*a(n) = 2 +5*A077412(n) -61*A077412(n-1). - _R. J. Mathar_, Feb 07 2022 %t A350924 nxt[{a_,b_}]:={b,16b-a-4}; NestList[nxt,{1,3},20][[All,1]] (* or *) LinearRecurrence[ {17,-17,1},{1,3,43},20] (* _Harvey P. Dale_, Jan 08 2023 *) %o A350924 (Python) %o A350924 a350924 = [1, 3] %o A350924 for k in range(2, 100): a350924.append(16*a350924[k-1]-a350924[k-2]-4) %o A350924 print(a350924) # _Karl-Heinz Hofmann_, Jan 22 2022 %Y A350924 Cf. A350916. %Y A350924 Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350926. %K A350924 nonn,easy %O A350924 0,2 %A A350924 _Max Alekseyev_, Jan 22 2022