This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350925 #11 Feb 09 2025 14:48:53 %S A350925 1,9,139,2211,35233,561513,8948971,142622019,2273003329,36225431241, %T A350925 577333896523,9201116913123,146640536713441,2337047470501929, %U A350925 37246118991317419,593600856390576771,9460367583257910913,150772280475735997833,2402896120028518054411 %N A350925 a(0) = 1, a(1) = 9, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2. %C A350925 One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916. %H A350925 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1). %F A350925 G.f.: (1 - 8*x + 3*x^2)/((1 - x)*(1 - 16*x + x^2)). - _Stefano Spezia_, Jan 22 2022 %F A350925 7*a(n) = 2+5*A077412(n)-19*A077412(n-1). - _R. J. Mathar_, Feb 07 2022 %t A350925 LinearRecurrence[{17,-17,1},{1,9,139},20] (* _Harvey P. Dale_, Feb 09 2025 *) %Y A350925 Cf. A350916. %Y A350925 Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350924, A350926. %K A350925 nonn,easy %O A350925 0,2 %A A350925 _Max Alekseyev_, Jan 22 2022