This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350926 #10 Jun 12 2022 11:22:56 %S A350926 1,17,386,8857,203321,4667522,107149681,2459775137,56467678466, %T A350926 1296296829577,29758359401801,683145969411842,15682598937070561, %U A350926 360016629583211057,8264699881476783746,189728080644382815097,4355481154939327963481,99986338482960160344962,2295330303953144359970641 %N A350926 a(0) = 1, a(1) = 17, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2. %C A350926 One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916. %H A350926 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (24,-24,1). %F A350926 G.f.: (1 - 7*x + 2*x^2)/((1 - x)*(1 - 23*x + x^2)). - _Stefano Spezia_, Jan 22 2022 %F A350926 21*a(n) = 4+17*A097778(n)-38*A097778(n-1). - _R. J. Mathar_, Feb 07 2022 %t A350926 LinearRecurrence[{24,-24,1},{1,17,386},20] (* _Harvey P. Dale_, Jun 12 2022 *) %Y A350926 Cf. A350916. %Y A350926 Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350925. %K A350926 nonn,easy %O A350926 0,2 %A A350926 _Max Alekseyev_, Jan 22 2022