cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350931 Maximal determinant of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.

This page as a plain text file.
%I A350931 #27 Dec 22 2023 16:37:09
%S A350931 1,1,7,105,2294,71753,3051554,175457984
%N A350931 Maximal determinant of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.
%C A350931 Also maximal absolute value of the determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1. - _Stefano Spezia_, Dec 22 2023
%H A350931 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350930%2B1.py">A350930+1.py</a>
%H A350931 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A350931 a(2) = 7:
%e A350931    [3    1]
%e A350931    [2    3]
%e A350931 a(3) = 105:
%e A350931    [5    1    3]
%e A350931    [4    5    1]
%e A350931    [2    4    5]
%o A350931 (Python)
%o A350931 from itertools import permutations
%o A350931 from sympy import Matrix
%o A350931 def A350931(n): return max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(range(1,2*n))) # _Chai Wah Wu_, Jan 27 2022
%Y A350931 Cf. A322908, A323254, A350930 (minimal).
%K A350931 nonn,hard,more
%O A350931 0,3
%A A350931 _Stefano Spezia_, Jan 25 2022
%E A350931 a(5) from _Alois P. Heinz_, Jan 25 2022
%E A350931 a(6) from _Pontus von Brömssen_, Jan 26 2022
%E A350931 a(7) from _Lucas A. Brown_, Aug 28 2022