This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350933 #27 Feb 12 2024 10:41:13 %S A350933 1,2,19,1115,86087,9603283,2307021183,683793949387 %N A350933 Maximal determinant of an n X n Toeplitz matrix using the first 2*n - 1 prime numbers. %C A350933 For n X n Hankel matrices the same maximal determinants appear. %H A350933 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350932%2B3.py">A350932+3.py</a> %H A350933 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A350933 a(2) = 19: %e A350933 5 2 %e A350933 3 5 %e A350933 a(3) = 1115: %e A350933 11 2 5 %e A350933 7 11 2 %e A350933 3 7 11 %t A350933 a[n_] := Max[Table[Abs[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] (* _Stefano Spezia_, Feb 06 2024 *) %o A350933 (Python) %o A350933 from itertools import permutations %o A350933 from sympy import Matrix, prime %o A350933 def A350933(n): return max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,2*n))) # _Chai Wah Wu_, Jan 27 2022 %o A350933 (PARI) a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = abs(matdet(matrix(n, n, i, j, prime(p[i+j-1])))); if (d>m, m = d)); m; \\ _Michel Marcus_, Feb 08 2024 %Y A350933 Cf. A024356, A318173, A350931, A350932 (minimal), A369946, A369947. %K A350933 nonn,more %O A350933 0,2 %A A350933 _Stefano Spezia_, Jan 25 2022 %E A350933 a(5) from _Alois P. Heinz_, Jan 25 2022 %E A350933 a(6)-a(7) from _Lucas A. Brown_, Aug 27 2022