cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350937 Minimal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.

This page as a plain text file.
%I A350937 #31 Dec 22 2023 16:35:54
%S A350937 1,1,7,89,2287,89025,5141775,404316249
%N A350937 Minimal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.
%C A350937 At least up to a(7) the minimal permanent is attained by a matrix which has 1, 3, 5, ... as first row and 1, 2, 4, 6,... as first column. - _Giovanni Resta_, Oct 13 2022
%C A350937 Also minimal permanent of an n X n Hankel matrix using the integers 1 to 2*n - 1. - _Stefano Spezia_, Dec 22 2023
%H A350937 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350937%2B8.sage">A350937+8.sage</a>
%H A350937 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A350937 a(2) = 7:
%e A350937     1    2
%e A350937     3    1
%e A350937 a(3) = 89:
%e A350937     1    2    4
%e A350937     3    1    2
%e A350937     5    3    1
%o A350937 (Python)
%o A350937 from itertools import permutations
%o A350937 from sympy import Matrix
%o A350937 def A350937(n): return 1 if n == 0 else min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(range(1,2*n))) # _Chai Wah Wu_, Jan 27 2022
%Y A350937 Cf. A322908, A323254, A350930, A350938 (maximal).
%K A350937 nonn,hard,more
%O A350937 0,3
%A A350937 _Stefano Spezia_, Jan 26 2022
%E A350937 a(5) from _Alois P. Heinz_, Jan 26 2022
%E A350937 a(6) from _Lucas A. Brown_, Sep 04 2022
%E A350937 a(7) from _Giovanni Resta_, Oct 13 2022