cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350938 Maximal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.

This page as a plain text file.
%I A350938 #27 Dec 22 2023 16:37:49
%S A350938 1,1,11,296,14502,1153889,134713213,21788125930
%N A350938 Maximal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.
%C A350938 Also maximal permanent of an n X n Hankel matrix using the integers 1 to 2*n - 1. - _Stefano Spezia_, Dec 22 2023
%H A350938 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350937%2B8.sage">A350937+8.sage</a>
%H A350938 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A350938 a(2) = 11:
%e A350938     3    1
%e A350938     2    3
%e A350938 a(3) = 296:
%e A350938     5    3    2
%e A350938     4    5    3
%e A350938     1    4    5
%o A350938 (Python)
%o A350938 from itertools import permutations
%o A350938 from sympy import Matrix
%o A350938 def A350938(n): return 1 if n == 0 else max(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(range(1,2*n))) # _Chai Wah Wu_, Jan 27 2022
%Y A350938 Cf. A322908, A323254, A350931, A350937 (minimal).
%K A350938 nonn,hard,more
%O A350938 0,3
%A A350938 _Stefano Spezia_, Jan 26 2022
%E A350938 a(5) from _Alois P. Heinz_, Jan 26 2022
%E A350938 a(6) from _Lucas A. Brown_, Sep 04 2022
%E A350938 a(7) from _Giovanni Resta_, Oct 13 2022