cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350941 Number of odd conjugate parts minus number of even conjugate parts in the integer partition with Heinz number n.

This page as a plain text file.
%I A350941 #7 Jan 29 2022 12:49:26
%S A350941 0,1,2,-1,3,0,4,1,-2,1,5,2,6,2,-1,-1,7,0,8,3,0,3,9,0,-3,4,2,4,10,1,11,
%T A350941 1,1,5,-2,-2,12,6,2,1,13,2,14,5,3,7,15,2,-4,-1,3,6,16,0,-1,2,4,8,17,
%U A350941 -1,18,9,4,-1,0,3,19,7,5,0,20,0,21,10,1,8,-3,4
%N A350941 Number of odd conjugate parts minus number of even conjugate parts in the integer partition with Heinz number n.
%C A350941 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A350941 a(n) = A344616(n) - A350847(n).
%e A350941 First positions n such that a(n) = 4, 3, 2, 1, 0, -1, -2, -3, -4, together with their prime indices, are:
%e A350941    7: (4)
%e A350941    5: (3)
%e A350941    3: (2)
%e A350941    2: (1)
%e A350941    1: ()
%e A350941    4: (1,1)
%e A350941    9: (2,2)
%e A350941   25: (3,3)
%e A350941   49: (4,4)
%t A350941 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A350941 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A350941 Table[Count[conj[primeMS[n]],_?OddQ]-Count[conj[primeMS[n]],_?EvenQ],{n,1,50}]
%Y A350941 A hybrid with A195017 (non-conjugate version) is A350849, conjugate A350942.
%Y A350941 Positions of 0's are A350848, counted by A045931.
%Y A350941 A000041 = integer partitions, strict A000009.
%Y A350941 A056239 adds up prime indices, counted by A001222, row sums of A112798.
%Y A350941 A122111 represents conjugation using Heinz numbers.
%Y A350941 A257991 counts odd parts, conjugate A344616.
%Y A350941 A257992 counts even parts, conjugate A350847.
%Y A350941 A316524 = alternating sum of prime indices.
%Y A350941 The following rank partitions:
%Y A350941   A325698: # of even parts = # of odd parts.
%Y A350941   A349157: # of even parts = # of odd conjugate parts, counted by A277579.
%Y A350941   A350943: # of even conjugate parts = # of odd parts, counted by A277579.
%Y A350941   A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
%Y A350941   A350945: # of even parts = # of even conjugate parts, counted by A350948.
%Y A350941 Cf. A026424, A028260, A130780, A171966, A239241, A241638, A325700, A350841, A350947, A350949, A350951.
%K A350941 sign
%O A350941 0,3
%A A350941 _Gus Wiseman_, Jan 28 2022