cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350942 Number of odd parts minus number of even conjugate parts of the integer partition with Heinz number n.

This page as a plain text file.
%I A350942 #7 Jan 29 2022 12:49:34
%S A350942 0,1,0,1,1,0,0,3,-2,1,1,2,0,0,-1,3,1,0,0,3,-2,1,1,2,-1,0,0,2,0,1,1,5,
%T A350942 -1,1,-2,0,0,0,-2,3,1,0,0,3,1,1,1,4,-4,1,-1,2,0,0,-1,2,-2,0,1,1,0,1,0,
%U A350942 5,-2,1,1,3,-1,0,0,2,1,0,1,2,-3,0,0,5,-2,1
%N A350942 Number of odd parts minus number of even conjugate parts of the integer partition with Heinz number n.
%C A350942 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A350942 First positions n such that a(n) = 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, together with their prime indices, are:
%e A350942   192: (2,1,1,1,1,1,1)
%e A350942    32: (1,1,1,1,1)
%e A350942    48: (2,1,1,1,1)
%e A350942     8: (1,1,1)
%e A350942    12: (2,1,1)
%e A350942     2: (1)
%e A350942     1: ()
%e A350942    15: (3,2)
%e A350942     9: (2,2)
%e A350942    77: (5,4)
%e A350942    49: (4,4)
%e A350942   221: (7,6)
%e A350942   169: (6,6)
%t A350942 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A350942 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A350942 Table[Count[primeMS[n],_?OddQ]-Count[conj[primeMS[n]],_?EvenQ],{n,100}]
%Y A350942 The conjugate version is A350849.
%Y A350942 This is a hybrid of A195017 and A350941.
%Y A350942 Positions of 0's are A350943.
%Y A350942 A000041 = integer partitions, strict A000009.
%Y A350942 A056239 adds up prime indices, counted by A001222, row sums of A112798.
%Y A350942 A122111 represents conjugation using Heinz numbers.
%Y A350942 A257991 = # of odd parts, conjugate A344616.
%Y A350942 A257992 = # of even parts, conjugate A350847.
%Y A350942 A316524 = alternating sum of prime indices.
%Y A350942 The following rank partitions:
%Y A350942   A325698: # of even parts = # of odd parts.
%Y A350942   A349157: # of even parts = # of odd conjugate parts, counted by A277579.
%Y A350942   A350848: # even conj parts = # odd conj parts, counted by A045931.
%Y A350942   A350943: # of even conjugate parts = # of odd parts, counted by A277579.
%Y A350942   A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
%Y A350942   A350945: # of even parts = # of even conjugate parts, counted by A350948.
%Y A350942 Cf. A026424, A028260, A130780, A171966, A239241, A241638, A325700, A350947, A350949, A350950, A350951.
%K A350942 sign
%O A350942 1,8
%A A350942 _Gus Wiseman_, Jan 28 2022