This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350943 #6 Jan 29 2022 12:49:40 %S A350943 1,3,6,7,13,14,18,19,26,27,29,36,37,38,42,43,53,54,58,61,63,70,71,74, %T A350943 78,79,84,86,89,101,105,106,107,113,114,117,122,126,130,131,139,140, %U A350943 142,151,156,158,162,163,171,173,174,178,181,190,193,195,199,202,210 %N A350943 Heinz numbers of integer partitions of which the number of even conjugate parts is equal to the number of odd parts. %C A350943 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A350943 A350847(a(n)) = A257991(a(n)). %e A350943 The terms together with their prime indices begin: %e A350943 1: () %e A350943 3: (2) %e A350943 6: (2,1) %e A350943 7: (4) %e A350943 13: (6) %e A350943 14: (4,1) %e A350943 18: (2,2,1) %e A350943 19: (8) %e A350943 26: (6,1) %e A350943 27: (2,2,2) %e A350943 29: (10) %e A350943 36: (2,2,1,1) %e A350943 37: (12) %e A350943 38: (8,1) %e A350943 42: (4,2,1) %e A350943 For example, the partition (6,3,2) has conjugate (3,3,2,1,1,1) and 1 = 1 so 195 is in the sequence. %t A350943 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350943 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350943 Select[Range[100],Count[primeMS[#],_?OddQ]==Count[conj[primeMS[#]],_?EvenQ]&] %Y A350943 These partitions are counted by A277579. %Y A350943 The conjugate version is A349157, also counted by A277579. %Y A350943 These are the positions of 0's in A350942. %Y A350943 A000041 = integer partitions, strict A000009. %Y A350943 A056239 adds up prime indices, counted by A001222, row sums of A112798. %Y A350943 A122111 = conjugation using Heinz numbers. %Y A350943 A257991 = # of odd parts, conjugate A344616. %Y A350943 A257992 = # of even parts, conjugate A350847. %Y A350943 A316524 = alternating sum of prime indices. %Y A350943 The following rank partitions: %Y A350943 A325040: product = product of conjugate, counted by A325039. %Y A350943 A325698: # of even parts = # of odd parts, counted by A045931. %Y A350943 A350848: # of even conj parts = # of odd conj parts, counted by A045931. %Y A350943 A350944: # of odd parts = # of odd conjugate parts, counted by A277103. %Y A350943 A350945: # of even parts = # of even conjugate parts, counted by A350948. %Y A350943 Cf. A000070, A000290, A027187, A027193, A103919, A236559, A344607, A344651, A345196, A350950, A350951. %K A350943 nonn %O A350943 1,2 %A A350943 _Gus Wiseman_, Jan 28 2022