cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350944 Heinz numbers of integer partitions of which the number of odd parts is equal to the number of odd conjugate parts.

This page as a plain text file.
%I A350944 #5 Jan 29 2022 12:49:45
%S A350944 1,2,6,9,10,12,15,18,20,30,35,49,54,55,56,70,75,77,81,84,88,90,98,108,
%T A350944 110,112,125,132,135,143,154,162,168,169,176,180,187,210,221,260,264,
%U A350944 270,286,294,315,323,330,338,340,350,361,363,364,374,391,416,420
%N A350944 Heinz numbers of integer partitions of which the number of odd parts is equal to the number of odd conjugate parts.
%C A350944 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A350944 A257991(a(n)) = A344616(a(n)).
%e A350944 The terms together with their prime indices begin:
%e A350944    1: ()
%e A350944    2: (1)
%e A350944    6: (2,1)
%e A350944    9: (2,2)
%e A350944   10: (3,1)
%e A350944   12: (2,1,1)
%e A350944   15: (3,2)
%e A350944   18: (2,2,1)
%e A350944   20: (3,1,1)
%e A350944   30: (3,2,1)
%e A350944   35: (4,3)
%e A350944   49: (4,4)
%e A350944   54: (2,2,2,1)
%t A350944 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A350944 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A350944 Select[Range[100],Count[conj[primeMS[#]],_?OddQ]==Count[primeMS[#],_?OddQ]&]
%Y A350944 These partitions are counted by A277103.
%Y A350944 The even rank case is A345196.
%Y A350944 The conjugate version is A350943, counted by A277579.
%Y A350944 These are the positions of 0's in A350951, even A350950.
%Y A350944 A000041 = integer partitions, strict A000009.
%Y A350944 A056239 adds up prime indices, counted by A001222, row sums of A112798.
%Y A350944 A122111 = conjugation using Heinz numbers.
%Y A350944 A257991 = # of odd parts, conjugate A344616.
%Y A350944 A257992 = # of even parts, conjugate A350847.
%Y A350944 A316524 = alternating sum of prime indices.
%Y A350944 The following rank partitions:
%Y A350944   A325040: product = product of conjugate, counted by A325039.
%Y A350944   A325698: # of even parts = # of odd parts, counted by A045931.
%Y A350944   A349157: # of even parts = # of odd conjugate parts, counted by A277579.
%Y A350944   A350848: # even conj parts = # odd conj parts, counted by A045931.
%Y A350944   A350945: # of even parts = # of even conjugate parts, counted by A350948.
%Y A350944 Cf. A000070, A000700, A027187, A027193, A103919, A236559, A350942.
%K A350944 nonn
%O A350944 1,2
%A A350944 _Gus Wiseman_, Jan 28 2022