This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350944 #5 Jan 29 2022 12:49:45 %S A350944 1,2,6,9,10,12,15,18,20,30,35,49,54,55,56,70,75,77,81,84,88,90,98,108, %T A350944 110,112,125,132,135,143,154,162,168,169,176,180,187,210,221,260,264, %U A350944 270,286,294,315,323,330,338,340,350,361,363,364,374,391,416,420 %N A350944 Heinz numbers of integer partitions of which the number of odd parts is equal to the number of odd conjugate parts. %C A350944 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A350944 A257991(a(n)) = A344616(a(n)). %e A350944 The terms together with their prime indices begin: %e A350944 1: () %e A350944 2: (1) %e A350944 6: (2,1) %e A350944 9: (2,2) %e A350944 10: (3,1) %e A350944 12: (2,1,1) %e A350944 15: (3,2) %e A350944 18: (2,2,1) %e A350944 20: (3,1,1) %e A350944 30: (3,2,1) %e A350944 35: (4,3) %e A350944 49: (4,4) %e A350944 54: (2,2,2,1) %t A350944 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350944 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350944 Select[Range[100],Count[conj[primeMS[#]],_?OddQ]==Count[primeMS[#],_?OddQ]&] %Y A350944 These partitions are counted by A277103. %Y A350944 The even rank case is A345196. %Y A350944 The conjugate version is A350943, counted by A277579. %Y A350944 These are the positions of 0's in A350951, even A350950. %Y A350944 A000041 = integer partitions, strict A000009. %Y A350944 A056239 adds up prime indices, counted by A001222, row sums of A112798. %Y A350944 A122111 = conjugation using Heinz numbers. %Y A350944 A257991 = # of odd parts, conjugate A344616. %Y A350944 A257992 = # of even parts, conjugate A350847. %Y A350944 A316524 = alternating sum of prime indices. %Y A350944 The following rank partitions: %Y A350944 A325040: product = product of conjugate, counted by A325039. %Y A350944 A325698: # of even parts = # of odd parts, counted by A045931. %Y A350944 A349157: # of even parts = # of odd conjugate parts, counted by A277579. %Y A350944 A350848: # even conj parts = # odd conj parts, counted by A045931. %Y A350944 A350945: # of even parts = # of even conjugate parts, counted by A350948. %Y A350944 Cf. A000070, A000700, A027187, A027193, A103919, A236559, A350942. %K A350944 nonn %O A350944 1,2 %A A350944 _Gus Wiseman_, Jan 28 2022