This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350945 #4 Jan 29 2022 12:49:52 %S A350945 1,2,5,6,8,9,11,14,17,20,21,23,24,26,30,31,32,36,38,39,41,44,47,56,57, %T A350945 58,59,66,67,68,73,74,75,80,83,84,86,87,92,96,97,102,103,104,106,109, %U A350945 111,120,122,124,125,127,128,129,137,138,142,144,149,152,156 %N A350945 Heinz numbers of integer partitions of which the number of even parts is equal to the number of even conjugate parts. %C A350945 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A350945 A257992(a(n)) = A350847(a(n)). %e A350945 The terms together with their prime indices begin: %e A350945 1: () %e A350945 2: (1) %e A350945 5: (3) %e A350945 6: (2,1) %e A350945 8: (1,1,1) %e A350945 9: (2,2) %e A350945 11: (5) %e A350945 14: (4,1) %e A350945 17: (7) %e A350945 20: (3,1,1) %e A350945 21: (4,2) %e A350945 23: (9) %e A350945 24: (2,1,1,1) %t A350945 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350945 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350945 Select[Range[100],Count[conj[primeMS[#]],_?EvenQ]==Count[primeMS[#],_?EvenQ]&] %Y A350945 These partitions are counted by A350948. %Y A350945 These are the positions of 0's in A350950. %Y A350945 A000041 = integer partitions, strict A000009. %Y A350945 A056239 adds up prime indices, counted by A001222, row sums of A112798. %Y A350945 A122111 = conjugation using Heinz numbers. %Y A350945 A257991 = # of odd parts, conjugate A344616. %Y A350945 A257992 = # of even parts, conjugate A350847. %Y A350945 A316524 = alternating sum of prime indices. %Y A350945 The following rank partitions: %Y A350945 A325040: product = product of conjugate, counted by A325039. %Y A350945 A325698: # of even parts = # of odd parts, counted by A045931. %Y A350945 A349157: # of even parts = # of odd conjugate parts, counted by A277579. %Y A350945 A350848: # of even conj parts = # of odd conj parts, counted by A045931. %Y A350945 A350944: # of odd parts = # of odd conjugate parts, counted by A277103. %Y A350945 A350945: # of even parts = # of even conjugate parts, counted by A350948. %Y A350945 Cf. A000070, A000290, A027187, A027193, A103919, A236559, A344607, A344651, A345196, `A350942, A350950, A350951. %K A350945 nonn %O A350945 1,2 %A A350945 _Gus Wiseman_, Jan 28 2022