This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350946 #7 Mar 16 2022 16:38:01 %S A350946 1,6,65,84,210,216,319,490,525,532,731,1254,1403,1924,2184,2340,2449, %T A350946 2470,3024,3135,3325,3774,4028,4141,4522,5311,5460,7030,7314,7315, %U A350946 7560,7776,7942,8201,8236,9048,9435,9464,10659,10921,11484,11914,12012,12025,12740 %N A350946 Heinz numbers of integer partitions with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts. %C A350946 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A350946 Closed under A122111 (conjugation). %F A350946 Intersection of A325698 and A350848. %F A350946 A257992(a(n)) = A257991(a(n)). %F A350946 A350847(a(n)) = A344616(a(n)). %e A350946 The terms together with their prime indices begin: %e A350946 1: () %e A350946 6: (2,1) %e A350946 65: (6,3) %e A350946 84: (4,2,1,1) %e A350946 210: (4,3,2,1) %e A350946 216: (2,2,2,1,1,1) %e A350946 319: (10,5) %e A350946 490: (4,4,3,1) %e A350946 525: (4,3,3,2) %e A350946 532: (8,4,1,1) %e A350946 731: (14,7) %e A350946 1254: (8,5,2,1) %e A350946 1403: (18,9) %e A350946 1924: (12,6,1,1) %e A350946 2184: (6,4,2,1,1,1) %e A350946 2340: (6,3,2,2,1,1) %e A350946 2449: (22,11) %e A350946 2470: (8,6,3,1) %e A350946 For example, the prime indices of 532 are (8,4,1,1), even/odd counts 2/2, and the prime indices of the conjugate 3024 are (4,2,2,2,1,1,1,1), with even/odd counts 4/4; so 532 belongs to the sequence. %t A350946 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A350946 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350946 Select[Range[1000],#==1||Mean[Mod[primeMS[#],2]]== Mean[Mod[conj[primeMS[#]],2]]==1/2&] %Y A350946 For the first condition alone: %Y A350946 - counted by A045931 (strict A239241) %Y A350946 - ordered version (compositions) A098123 %Y A350946 - ranked by A325698 %Y A350946 - without multiplicity A325700 (counted by A241638) %Y A350946 The second condition alone is ranked by A350848, strict A352129. %Y A350946 These partitions are counted by A351977, strict A352128. %Y A350946 There are four statistics: %Y A350946 - A257991 = # of odd parts, conjugate A344616. %Y A350946 - A257992 = # of even parts, conjugate A350847. %Y A350946 There are four other possible pairings of statistics: %Y A350946 - A349157: # of even parts = # of odd conjugate parts, counted by A277579. %Y A350946 - A350943: # of even conj parts = # of odd parts, strict counted by A352130. %Y A350946 - A350944: # of odd parts = # of odd conjugate parts, counted by A277103. %Y A350946 - A350945: # of even parts = # of even conjugate parts, counted by A350948. %Y A350946 There are two other possible double-pairings of statistics: %Y A350946 - A350949, counted by A351976. %Y A350946 - A351980, counted by A351981. %Y A350946 The case of all four statistics equal is A350947, counted by A351978. %Y A350946 A056239 adds up prime indices, counted by A001222, row sums of A112798. %Y A350946 A122111 represents partition conjugation using Heinz numbers. %Y A350946 A195017 = # of even parts - # of odd parts. %Y A350946 A316524 = alternating sum of prime indices. %Y A350946 Cf. A026424, A028260, A130780, A171966, A347450, A350849, A350941, A350942, A350950, A350951. %K A350946 nonn %O A350946 1,2 %A A350946 _Gus Wiseman_, Mar 14 2022