cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350947 Heinz numbers of integer partitions with the same number of even parts, odd parts, even conjugate parts, and odd conjugate parts.

This page as a plain text file.
%I A350947 #7 Mar 16 2022 16:37:54
%S A350947 1,6,84,210,490,525,2184,2340,5460,9464,12012,12740,12870,13650,14625,
%T A350947 19152,22308,30030,34125,43940,45144,55770,59150,66066,70070,70785,
%U A350947 75075,79625,82992,88920
%N A350947 Heinz numbers of integer partitions with the same number of even parts, odd parts, even conjugate parts, and odd conjugate parts.
%C A350947 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A350947 A257992(a(n)) = A257991(a(n)) = A350847(a(n)) = A344616(a(n)).
%e A350947 The terms together with their prime indices begin:
%e A350947       1: ()
%e A350947       6: (2,1)
%e A350947      84: (4,2,1,1)
%e A350947     210: (4,3,2,1)
%e A350947     490: (4,4,3,1)
%e A350947     525: (4,3,3,2)
%e A350947    2184: (6,4,2,1,1,1)
%e A350947    2340: (6,3,2,2,1,1)
%e A350947    5460: (6,4,3,2,1,1)
%e A350947    9464: (6,6,4,1,1,1)
%e A350947   12012: (6,5,4,2,1,1)
%e A350947   12740: (6,4,4,3,1,1)
%e A350947   12870: (6,5,3,2,2,1)
%e A350947   13650: (6,4,3,3,2,1)
%e A350947   14625: (6,3,3,3,2,2)
%e A350947   19152: (8,4,2,2,1,1,1,1)
%e A350947 For example, the partition (6,6,4,1,1,1) has conjugate (6,3,3,3,2,2), and all four statistics are equal to 3, so 9464 is in the sequence.
%t A350947 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A350947 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A350947 Select[Range[1000],Count[primeMS[#],_?EvenQ]==Count[primeMS[#],_?OddQ]==Count[conj[primeMS[#]],_?EvenQ]==Count[conj[primeMS[#]],_?OddQ]&]
%Y A350947 These partitions are counted by A351978.
%Y A350947 There are four individual statistics:
%Y A350947 - A257991 counts odd parts, conjugate A344616.
%Y A350947 - A257992 counts even parts, conjugate A350847.
%Y A350947 There are six possible pairings of statistics:
%Y A350947 - A325698: # of even parts = # of odd parts, counted by A045931.
%Y A350947 - A349157: # of even parts = # of odd conjugate parts, counted by A277579.
%Y A350947 - A350848: # of even conj parts = # of odd conj parts, counted by A045931.
%Y A350947 - A350943: # of even conjugate parts = # of odd parts, counted by A277579.
%Y A350947 - A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
%Y A350947 - A350945: # of even parts = # of even conjugate parts, counted by A350948.
%Y A350947 There are three possible double-pairings of statistics:
%Y A350947 - A350946, counted by A351977.
%Y A350947 - A350949, counted by A351976.
%Y A350947 - A351980, counted by A351981.
%Y A350947 A056239 adds up prime indices, counted by A001222, row sums of A112798.
%Y A350947 A122111 represents partition conjugation using Heinz numbers.
%Y A350947 A195017 = # of even parts - # of odd parts.
%Y A350947 A316524 = alternating sum of prime indices.
%Y A350947 Cf. A026424, A028260, A098123, A239241, A241638, A325700, A350849, A350941, A350942, A350950, A350951.
%K A350947 nonn
%O A350947 1,2
%A A350947 _Gus Wiseman_, Mar 14 2022