This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350948 #7 Mar 16 2022 16:37:48 %S A350948 1,1,0,3,1,5,3,7,6,10,10,18,19,27,31,40,47,65,75,98,115,142,170,217, %T A350948 257,316,376,458,544,671,792,952,1129,1351,1598,1919,2259,2681,3155, %U A350948 3739,4384,5181,6064,7129,8331,9764,11380,13308,15477,18047,20944 %N A350948 Number of integer partitions of n with as many even parts as even conjugate parts. %e A350948 The a(0) = 1 through a(8) = 6 partitions (empty column indicated by dot): %e A350948 () (1) . (3) (22) (5) (42) (7) (62) %e A350948 (21) (41) (321) (61) (332) %e A350948 (111) (311) (2211) (511) (521) %e A350948 (2111) (4111) (4211) %e A350948 (11111) (31111) (32111) %e A350948 (211111) (221111) %e A350948 (1111111) %e A350948 For example, both (3,2,1,1,1) and its conjugate (5,2,1) have exactly 1 even part, so are counted under a(8). %t A350948 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A350948 Table[Length[Select[IntegerPartitions[n],Count[#,_?EvenQ]==Count[conj[#],_?EvenQ]&]],{n,0,30}] %Y A350948 Comparing even to odd parts gives A045931, ranked by A325698. %Y A350948 The odd version is A277103, even rank case A345196, ranked by A350944. %Y A350948 Comparing even to odd conjugate parts gives A277579, ranked by A349157. %Y A350948 Comparing product of parts to product of conjugate parts gives A325039. %Y A350948 These partitions are ranked by A350945, the zeros of A350950. %Y A350948 A000041 counts integer partitions, strict A000009. %Y A350948 A103919 counts partitions by sum and alternating sum, reverse A344612. %Y A350948 A116482 counts partitions by number of even (or even conjugate) parts. %Y A350948 A122111 represents partition conjugation using Heinz numbers. %Y A350948 A257991 counts odd parts, conjugate A344616. %Y A350948 A257992 counts even parts, conjugate A350847. %Y A350948 A351976: # even = # even conj, # odd = # odd conj, ranked by A350949. %Y A350948 A351977: # even = # odd, # even conj = # odd conj, ranked by A350946. %Y A350948 A351978: # even = # odd = # even conj = # odd conj, ranked by A350947. %Y A350948 A351981: # even = # odd conj, # odd = # even conj, ranked by A351980. %Y A350948 Cf. A027187, A130780, A171966, A195017, A239241, A241638, A344607, A344651, A350848, A350941, A350942, A350943. %K A350948 nonn %O A350948 0,4 %A A350948 _Gus Wiseman_, Mar 14 2022