A350949 Heinz numbers of integer partitions with as many even parts as even conjugate parts and as many odd parts as odd conjugate parts.
1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 294, 315, 350, 416, 441, 490, 525, 624, 660, 735, 924, 990, 1088, 1100, 1386, 1540, 1560, 1632, 1650, 1715, 2184, 2310, 2340, 2401, 2432, 2600, 3267, 3276, 3388, 3640, 3648, 3900, 4080, 4125, 5082, 5324, 5390
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: () 2: (1) 6: (2,1) 9: (2,2) 20: (3,1,1) 30: (3,2,1) 56: (4,1,1,1) 75: (3,3,2) 84: (4,2,1,1) 125: (3,3,3) 176: (5,1,1,1,1) 210: (4,3,2,1) 264: (5,2,1,1,1) 294: (4,4,2,1) 315: (4,3,2,2) 350: (4,3,3,1) 416: (6,1,1,1,1,1)
Crossrefs
These partitions are counted by A351976.
There are four other possible pairings of statistics:
There are two other possible double-pairings of statistics:
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[1000],Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?OddQ]&&Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?EvenQ]&]
Comments