cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350953 Minimal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n.

This page as a plain text file.
%I A350953 #20 Oct 11 2022 00:54:50
%S A350953 1,1,-3,-12,-100,-1749,-47600,-800681,-39453535,-1351201968,
%T A350953 -66984136299,-2938096403400,-235011452211680
%N A350953 Minimal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n.
%H A350953 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350953%2B4%2BA356865.py">A350953+4+A356865.py</a>
%H A350953 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A350953 a(3) = -12:
%e A350953     2    3    1
%e A350953     3    2    3
%e A350953     1    3    2
%e A350953 a(4) = -100:
%e A350953     3    4    1    2
%e A350953     4    3    4    1
%e A350953     1    4    3    4
%e A350953     2    1    4    3
%e A350953 a(5) = -1749:
%e A350953     5    4    1    3    2
%e A350953     4    5    4    1    3
%e A350953     1    4    5    4    1
%e A350953     3    1    4    5    4
%e A350953     2    3    1    4    5
%o A350953 (Python)
%o A350953 from itertools import permutations
%o A350953 from sympy import Matrix
%o A350953 def A350953(n): return min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022
%Y A350953 Cf. A307887, A350930, A350954 (maximal), A356865 (minimal nonzero absolute value).
%K A350953 sign,hard,more
%O A350953 0,3
%A A350953 _Stefano Spezia_, Jan 27 2022
%E A350953 a(9) from _Alois P. Heinz_, Jan 27 2022
%E A350953 a(10)-a(12) from _Lucas A. Brown_, Sep 01 2022