This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350953 #20 Oct 11 2022 00:54:50 %S A350953 1,1,-3,-12,-100,-1749,-47600,-800681,-39453535,-1351201968, %T A350953 -66984136299,-2938096403400,-235011452211680 %N A350953 Minimal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n. %H A350953 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350953%2B4%2BA356865.py">A350953+4+A356865.py</a> %H A350953 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A350953 a(3) = -12: %e A350953 2 3 1 %e A350953 3 2 3 %e A350953 1 3 2 %e A350953 a(4) = -100: %e A350953 3 4 1 2 %e A350953 4 3 4 1 %e A350953 1 4 3 4 %e A350953 2 1 4 3 %e A350953 a(5) = -1749: %e A350953 5 4 1 3 2 %e A350953 4 5 4 1 3 %e A350953 1 4 5 4 1 %e A350953 3 1 4 5 4 %e A350953 2 3 1 4 5 %o A350953 (Python) %o A350953 from itertools import permutations %o A350953 from sympy import Matrix %o A350953 def A350953(n): return min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022 %Y A350953 Cf. A307887, A350930, A350954 (maximal), A356865 (minimal nonzero absolute value). %K A350953 sign,hard,more %O A350953 0,3 %A A350953 _Stefano Spezia_, Jan 27 2022 %E A350953 a(9) from _Alois P. Heinz_, Jan 27 2022 %E A350953 a(10)-a(12) from _Lucas A. Brown_, Sep 01 2022