This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350954 #18 Oct 11 2022 00:55:00 %S A350954 1,1,3,15,100,3091,49375,1479104,43413488,1539619328,64563673460, %T A350954 2877312739624,252631974548628 %N A350954 Maximal determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n. %H A350954 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350953%2B4%2BA356865.py">A350953+4+A356865.py</a> %H A350954 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A350954 a(3) = 15: %e A350954 1 3 2 %e A350954 3 1 3 %e A350954 2 3 1 %e A350954 a(4) = 100: %e A350954 2 1 4 3 %e A350954 1 2 1 4 %e A350954 4 1 2 1 %e A350954 3 4 1 2 %e A350954 a(5) = 3091: %e A350954 3 5 1 2 4 %e A350954 5 3 5 1 2 %e A350954 1 5 3 5 1 %e A350954 2 1 5 3 5 %e A350954 4 2 1 5 3 %o A350954 (Python) %o A350954 from itertools import permutations %o A350954 from sympy import Matrix %o A350954 def A350954(n): return max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022 %Y A350954 Cf. A307887, A350931, A350953 (minimal), A356865 (minimal nonzero absolute value). %K A350954 nonn,hard,more %O A350954 0,3 %A A350954 _Stefano Spezia_, Jan 27 2022 %E A350954 a(9) from _Alois P. Heinz_, Jan 27 2022 %E A350954 a(10)-a(12) from _Lucas A. Brown_, Sep 01 2022