cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350955 Minimal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.

This page as a plain text file.
%I A350955 #22 Oct 12 2022 05:31:52
%S A350955 1,2,-5,-35,-435,-87986,-7186995,-496722800,-68316404507,
%T A350955 -9102428703537,-3721326642272925,-488684390484513105,
%U A350955 -195315251884652232704
%N A350955 Minimal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.
%H A350955 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A348891%2BA350955%2B6.py">A348891+A350955+6.py</a>
%H A350955 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A350955 a(3) = -35:
%e A350955    [3    5    2]
%e A350955    [5    3    5]
%e A350955    [2    5    3]
%e A350955 a(4) = -435:
%e A350955    [5    7    2    3]
%e A350955    [7    5    7    2]
%e A350955    [2    7    5    7]
%e A350955    [3    2    7    5]
%e A350955 a(5) = -87986:
%e A350955    [ 2    3   11    5    7]
%e A350955    [ 3    2    3   11    5]
%e A350955    [11    3    2    3   11]
%e A350955    [ 5   11    3    2    3]
%e A350955    [ 7    5   11    3    2]
%o A350955 (Python)
%o A350955 from itertools import permutations
%o A350955 from sympy import Matrix, prime
%o A350955 def A350955(n): return min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022
%Y A350955 Cf. A350932, A350956 (maximal), A348891.
%K A350955 sign,hard,more
%O A350955 0,2
%A A350955 _Stefano Spezia_, Jan 27 2022
%E A350955 a(9) from _Alois P. Heinz_, Jan 27 2022
%E A350955 a(10)-a(12) from _Lucas A. Brown_, Aug 29 2022