This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350955 #22 Oct 12 2022 05:31:52 %S A350955 1,2,-5,-35,-435,-87986,-7186995,-496722800,-68316404507, %T A350955 -9102428703537,-3721326642272925,-488684390484513105, %U A350955 -195315251884652232704 %N A350955 Minimal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers. %H A350955 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A348891%2BA350955%2B6.py">A348891+A350955+6.py</a> %H A350955 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A350955 a(3) = -35: %e A350955 [3 5 2] %e A350955 [5 3 5] %e A350955 [2 5 3] %e A350955 a(4) = -435: %e A350955 [5 7 2 3] %e A350955 [7 5 7 2] %e A350955 [2 7 5 7] %e A350955 [3 2 7 5] %e A350955 a(5) = -87986: %e A350955 [ 2 3 11 5 7] %e A350955 [ 3 2 3 11 5] %e A350955 [11 3 2 3 11] %e A350955 [ 5 11 3 2 3] %e A350955 [ 7 5 11 3 2] %o A350955 (Python) %o A350955 from itertools import permutations %o A350955 from sympy import Matrix, prime %o A350955 def A350955(n): return min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022 %Y A350955 Cf. A350932, A350956 (maximal), A348891. %K A350955 sign,hard,more %O A350955 0,2 %A A350955 _Stefano Spezia_, Jan 27 2022 %E A350955 a(9) from _Alois P. Heinz_, Jan 27 2022 %E A350955 a(10)-a(12) from _Lucas A. Brown_, Aug 29 2022