This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350956 #23 Oct 12 2022 05:31:32 %S A350956 1,2,5,64,1107,160160,5713367,889747443,62837596341,11671262491586, %T A350956 3090090680653053,635672008069583520,278356729040728193703 %N A350956 Maximal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers. %H A350956 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A348891%2BA350955%2B6.py">A348891+A350955+6.py</a> %H A350956 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A350956 a(3) = 64: %e A350956 [5 2 3] %e A350956 [2 5 2] %e A350956 [3 2 5] %e A350956 a(4) = 1107: %e A350956 [3 2 7 5] %e A350956 [2 3 2 7] %e A350956 [7 2 3 2] %e A350956 [5 7 2 3] %e A350956 a(5) = 160160: %e A350956 [ 5 11 2 3 7] %e A350956 [11 5 11 2 3] %e A350956 [ 2 11 5 11 2] %e A350956 [ 3 2 11 5 11] %e A350956 [ 7 3 2 11 5] %o A350956 (Python) %o A350956 from itertools import permutations %o A350956 from sympy import Matrix, prime %o A350956 def A350956(n): return max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022 %Y A350956 Cf. A350933, A350955 (minimal). %K A350956 nonn,hard,more %O A350956 0,2 %A A350956 _Stefano Spezia_, Jan 27 2022 %E A350956 a(9) from _Alois P. Heinz_, Jan 27 2022 %E A350956 a(10)-a(12) from _Lucas A. Brown_, Aug 29 2022