cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350956 Maximal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.

This page as a plain text file.
%I A350956 #23 Oct 12 2022 05:31:32
%S A350956 1,2,5,64,1107,160160,5713367,889747443,62837596341,11671262491586,
%T A350956 3090090680653053,635672008069583520,278356729040728193703
%N A350956 Maximal determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.
%H A350956 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A348891%2BA350955%2B6.py">A348891+A350955+6.py</a>
%H A350956 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A350956 a(3) = 64:
%e A350956    [5    2    3]
%e A350956    [2    5    2]
%e A350956    [3    2    5]
%e A350956 a(4) = 1107:
%e A350956    [3    2    7    5]
%e A350956    [2    3    2    7]
%e A350956    [7    2    3    2]
%e A350956    [5    7    2    3]
%e A350956 a(5) = 160160:
%e A350956    [ 5   11    2    3    7]
%e A350956    [11    5   11    2    3]
%e A350956    [ 2   11    5   11    2]
%e A350956    [ 3    2   11    5   11]
%e A350956    [ 7    3    2   11    5]
%o A350956 (Python)
%o A350956 from itertools import permutations
%o A350956 from sympy import Matrix, prime
%o A350956 def A350956(n): return max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 27 2022
%Y A350956 Cf. A350933, A350955 (minimal).
%K A350956 nonn,hard,more
%O A350956 0,2
%A A350956 _Stefano Spezia_, Jan 27 2022
%E A350956 a(9) from _Alois P. Heinz_, Jan 27 2022
%E A350956 a(10)-a(12) from _Lucas A. Brown_, Aug 29 2022