A350972 E.g.f. = tan(x).
0, 1, 0, 2, 0, 16, 0, 272, 0, 7936, 0, 353792, 0, 22368256, 0, 1903757312, 0, 209865342976, 0, 29088885112832, 0, 4951498053124096, 0, 1015423886506852352, 0, 246921480190207983616, 0, 70251601603943959887872, 0, 23119184187809597841473536, 0, 8713962757125169296170811392, 0
Offset: 0
Keywords
Examples
tan(x) = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + (1382/155925)*x^11 + (21844/6081075)*x^13 + (929569/638512875)*x^15 + ... = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ...
Programs
-
Maple
ptan := proc(n) option remember; if irem(n, 2) = 0 then 0 else -add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n,2) fi end: A350972 := n -> abs(ptan(n)): seq(A350972(n), n=0..29); # Peter Luschny, Jun 06 2022
-
Python
from functools import cache from math import comb as binomial @cache def ptan(n): return (0 if n % 2 == 0 else -sum(binomial(n,k)*ptan(n-k) if k > 0 else 1 for k in range(0,n+1,2))) def A350972(n): t = ptan(n) return -t if t < 0 else t print([A350972(n) for n in range(99)]) # Peter Luschny, Jun 06 2022
Comments