cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350972 E.g.f. = tan(x).

Original entry on oeis.org

0, 1, 0, 2, 0, 16, 0, 272, 0, 7936, 0, 353792, 0, 22368256, 0, 1903757312, 0, 209865342976, 0, 29088885112832, 0, 4951498053124096, 0, 1015423886506852352, 0, 246921480190207983616, 0, 70251601603943959887872, 0, 23119184187809597841473536, 0, 8713962757125169296170811392, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 05 2022

Keywords

Comments

Normally these zeros would be omitted in an OEIS entry, but in view of its importance this is included as a pointer to the main entry A000182.

Examples

			tan(x) = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + (1382/155925)*x^11 + (21844/6081075)*x^13 + (929569/638512875)*x^15 + ... = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    ptan := proc(n) option remember;
        if irem(n, 2) = 0 then 0 else
        -add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n,2) fi end:
    A350972 := n -> abs(ptan(n)): seq(A350972(n), n=0..29); # Peter Luschny, Jun 06 2022
  • Python
    from functools import cache
    from math import comb as binomial
    @cache
    def ptan(n):
        return (0 if n % 2 == 0 else
        -sum(binomial(n,k)*ptan(n-k) if k > 0 else 1 for k in range(0,n+1,2)))
    def A350972(n):
        t = ptan(n)
        return -t if t < 0 else t
    print([A350972(n) for n in range(99)]) # Peter Luschny, Jun 06 2022