This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350981 #15 Mar 09 2022 06:41:46 %S A350981 1,17,652,4700,165985,1194161,42159916,303312572,10708453057, %T A350981 77040199505,2719904916940,19567907362076,690845140450081, %U A350981 4970171429768177,175471945769404012,1262403975253755260,44569183380288169345,320645639543024068241,11320397106647425609996,81442730039952859578332 %N A350981 Union of A350979 and A350980. %C A350981 Arises in studying the equation x^3 - 7*y^2 = 1. %D A350981 P.-F. Teilhet, Query 2228, L'Intermédiaire des Mathématiciens, 11 (1904), 44-45. %H A350981 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,254,-254,-1,1). %F A350981 From _Chai Wah Wu_, Mar 06 2022: (Start) %F A350981 a(n) = a(n-1) + 254*a(n-2) - 254*a(n-3) - a(n-4) + a(n-5) for n > 5. %F A350981 G.f.: x*(4*x^4 + 16*x^3 - 381*x^2 - 16*x - 1)/((x - 1)*(x^2 - 16*x + 1)*(x^2 + 16*x + 1)). (End) %F A350981 4*a(n) = 7*( -A077412(n)+17*A077412(n-1)) -3*( (-1)^n*A077412(n)+15*(-1)^(n-1)*A077412(n-1)) -6 . - _R. J. Mathar_, Mar 09 2022 %Y A350981 Cf. A350979, A350980. %K A350981 nonn,easy %O A350981 1,2 %A A350981 _N. J. A. Sloane_, Mar 06 2022