A350987 Triangular numbers that are binary palindromes.
0, 1, 3, 15, 21, 45, 153, 231, 325, 561, 903, 2145, 4095, 8385, 14535, 33153, 58311, 63903, 101475, 131841, 240471, 399171, 525825, 932295, 976503, 1044735, 1308153, 1395285, 1532125, 2100225, 3727815, 8394753, 14680071, 17913105, 33566721, 54054003, 59650503
Offset: 1
Examples
3 is a term since 3 = A000217(2) = 2*(2+1)/2 is a triangular number, and 3 = 11_2 is also a binary palindromic number. 15 is a term since 15 = A000217(5) = 5*(5+1)/2 is a triangular number, and 15 = 1111_2 is also a binary palindromic number.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..128
- Charles W. Trigg, Infinite sequences of palindromic triangular numbers, The Fibonacci Quarterly, Vol. 12, No. 2 (1974), pp. 209-212.
- Maciej Ulas, On certain diophantine equations related to triangular and tetrahedral numbers, arXiv:0811.2477 [math.NT], 2008.
Crossrefs
Programs
-
Mathematica
t[n_] := n*(n + 1)/2; Select[t /@ Range[0, 2*10^4], PalindromeQ[IntegerDigits[#, 2]] &]
-
Python
from itertools import count, islice def agen(): for i in count(0): t = i*(i+1)//2 b = bin(t)[2:] if b == b[::-1]: yield t print(list(islice(agen(), 37))) # Michael S. Branicky, Jan 28 2022
Comments