This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350994 #42 Jun 16 2025 21:33:06 %S A350994 15,1353,133533,13335333,1333353333,133333533333,13333335333333, %T A350994 1333333353333333,133333333533333333,13333333335333333333, %U A350994 1333333333353333333333,133333333333533333333333,13333333333335333333333333,1333333333333353333333333333,133333333333333533333333333333 %N A350994 a(n) = (40*100^n + 6*10^n - 1)/3. %C A350994 Subsequence of A186074. %C A350994 Terms of this sequence satisfy the identity proposed in 2nd formula because a(n) = Sum_{j=(4*10^n-1)/3..(16*10^n-1)/3} j = ((4*10^n-1)/3).((16*10^n-1)/3) where "." means concatenation (see examples). %H A350994 Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a1-pot-pourri/1024-a1945-concatenations-en-tous-genres">A1945 - Concaténations en tous genres</a> (in French). %H A350994 Richard Hoshino, <a href="http://cms.math.ca/crux/v27/n1/public_page34-47.pdf">Astonishing Pairs of Numbers</a>, Crux Mathematicorum with Mathematical Mayhem 27:1 (2001), pp. 39-44. %H A350994 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A350994 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), n >= 3. %F A350994 a(n) = Sum_{j=A097166(n)..A350995(n)} j = A097166(n).A350995(n) where "." means concatenation. %F A350994 G.f.: (15 - 312*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - _Stefano Spezia_, Jan 30 2022 %F A350994 a(n) = 2*A332167(n) + 1. - _Hugo Pfoertner_, Jan 30 2022 %F A350994 E.g.f.: exp(x)*(40*exp(99*x) + 6*exp(9*x) - 1)/3. - _Elmo R. Oliveira_, May 02 2025 %e A350994 a(0) = (40+6-1)/3 = Sum_{j=1..5} j = 15. %e A350994 a(1) = (4000+60-1)/3 = Sum_{j=13..53} j = 1353. %e A350994 a(2) = (400000+600-1)/3 = Sum_{j=133..533} j = 133533. %p A350994 Data := seq((40*100^n + 6*10^n - 1)/3, n = 0..17); %t A350994 Table[(40*100^n + 6*10^n - 1)/3, {n, 0, 17}] (* _Amiram Eldar_, Jan 29 2022 *) %t A350994 LinearRecurrence[{111,-1110,1000},{15,1353,133533},20] (* _Harvey P. Dale_, Jun 16 2025 *) %Y A350994 Cf. A070152, A070153, A097166, A186074, A332167, A350995. %K A350994 nonn,easy %O A350994 0,1 %A A350994 _Bernard Schott_, Jan 28 2022