cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351007 Number of even-length integer partitions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 10, 13, 14, 16, 18, 20, 23, 27, 28, 32, 37, 40, 44, 51, 54, 60, 67, 73, 81, 90, 96, 107, 118, 127, 139, 154, 166, 181, 198, 213, 232, 256, 273, 297, 325, 348, 377, 411, 440, 476, 516, 555, 598, 647, 692, 746, 807
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

These are partitions whose multiplicities begin with a 1, are followed by any number of 2's, and end with another 1.

Examples

			The a(3) = 1 through a(15) = 13 partitions (A..E = 10..14):
  21  31  32  42  43  53    54    64    65    75    76    86    87
          41  51  52  62    63    73    74    84    85    95    96
                  61  71    72    82    83    93    94    A4    A5
                      3221  81    91    92    A2    A3    B3    B4
                            4221  5221  A1    B1    B2    C2    C3
                                        4331  4332  C1    D1    D2
                                        6221  5331  5332  5441  E1
                                              7221  6331  6332  5442
                                                    8221  7331  6441
                                                          9221  7332
                                                                8331
                                                                A221
                                                                433221
		

Crossrefs

The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A351006, odd-length A053251.
Without equalities we have A351008, any length A122129, opposite A122135.
Without inequalities we have A351012, any length A351003, opposite A351004.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]