This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351008 #24 Jan 04 2025 10:37:49 %S A351008 1,0,0,1,1,2,2,3,4,5,6,8,10,12,15,19,23,28,34,41,50,60,71,85,102,120, %T A351008 142,168,197,231,271,316,369,429,497,577,668,770,888,1023,1175,1348, %U A351008 1545,1767,2020,2306,2626,2990,3401,3860,4379,4963,5616,6350,7173,8093 %N A351008 Alternately strict partitions. Number of even-length integer partitions y of n such that y_i > y_{i+1} for all odd i. %C A351008 Write the series in the g.f. given below as Sum_{k >= 0} q^(1 + 3 + 5 + ... + 2*k-1 + 2*k)/Product_{i = 1..2*k} 1 - q^i. Since 1/Product_{i = 1..2*k} 1 - q^i is the g.f. for partitions with parts <= 2*k, we see that the k-th summand of the series is the g.f. for partitions with largest part 2*k in which every odd number less than 2*k appears at least once as a part. The partitions of this type are conjugate to (and hence equinumerous with) the partitions (y_1, y_2, ..., y_{2*k}) of even length 2*k having strict decrease y_i > y_(i+1) for all odd i < 2*k. - _Peter Bala_, Jan 02 2024 %F A351008 Conjecture: a(n+1) = A122129(n+1) - A122130(n). - _Gus Wiseman_, Feb 21 2022 %F A351008 G.f.: Sum_{n >= 0} q^(n*(n+2))/Product_{k = 1..2*n} 1 - q^k = 1 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 4*q^8 + 5*q^9 + 6*q^10 + .... - _Peter Bala_, Jan 02 2024 %e A351008 The a(3) = 1 through a(13) = 12 partitions (A..C = 10..12): %e A351008 21 31 32 42 43 53 54 64 65 75 76 %e A351008 41 51 52 62 63 73 74 84 85 %e A351008 61 71 72 82 83 93 94 %e A351008 3221 81 91 92 A2 A3 %e A351008 4221 4321 A1 B1 B2 %e A351008 5221 4331 4332 C1 %e A351008 5321 5331 5332 %e A351008 6221 5421 5431 %e A351008 6321 6331 %e A351008 7221 6421 %e A351008 7321 %e A351008 8221 %e A351008 a(10) = 6: the six partitions 64, 73, 82, 91, 4321 and 5221 listed above have conjugate partitions 222211, 2221111, 22111111, 211111111, 4321 and 43111, These are the partitions of 10 with largest part L even and such that every odd number less than L appears at least once as a part. - _Peter Bala_, Jan 02 2024 %p A351008 series(add(q^(n*(n+2))/mul(1 - q^k, k = 1..2*n), n = 0..10), q, 141): %p A351008 seq(coeftayl(%, q = 0, n), n = 0..140); # _Peter Bala_, Jan 03 2025 %t A351008 Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}] %Y A351008 The version for equal instead of unequal is A035363. %Y A351008 The alternately equal and unequal version is A035457, any length A351005. %Y A351008 This is the even-length case of A122129, opposite A122135. %Y A351008 The odd-length version appears to be A122130. %Y A351008 The alternately unequal and equal version is A351007, any length A351006. %Y A351008 Cf. A000070, A003242, A018819, A027383, A053251, A122134, A350842, A350844, A351003, A351004, A351012. %K A351008 nonn,easy %O A351008 0,6 %A A351008 _Gus Wiseman_, Jan 31 2022