This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351009 #12 Mar 13 2022 19:00:03 %S A351009 0,3,10,36,43,58,136,147,228,528,547,586,676,904,2080,2115,2186,2347, %T A351009 2362,2696,2707,2788,3600,3658,3748,8256,8323,8458,8740,8747,8762, %U A351009 9352,10768,10787,11144,14368,14474,14984,32896,33027,33290,33828,33835,33850,34963 %N A351009 Numbers k such that the k-th composition in standard order is a concatenation of distinct twins (x,x). %C A351009 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A351009 The terms together with their binary expansions and standard compositions begin: %e A351009 0: 0 () %e A351009 3: 11 (1,1) %e A351009 10: 1010 (2,2) %e A351009 36: 100100 (3,3) %e A351009 43: 101011 (2,2,1,1) %e A351009 58: 111010 (1,1,2,2) %e A351009 136: 10001000 (4,4) %e A351009 147: 10010011 (3,3,1,1) %e A351009 228: 11100100 (1,1,3,3) %e A351009 528: 1000010000 (5,5) %e A351009 547: 1000100011 (4,4,1,1) %e A351009 586: 1001001010 (3,3,2,2) %e A351009 676: 1010100100 (2,2,3,3) %e A351009 904: 1110001000 (1,1,4,4) %t A351009 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]], 1],0]]//Reverse; %t A351009 Select[Range[0,1000], UnsameQ@@Split[stc[#]]&&And@@(#==2&)/@Length/@Split[stc[#]]&] %Y A351009 The case of twins (binary weight 2) is A000120. %Y A351009 All terms are evil numbers A001969. %Y A351009 The version for Heinz numbers of partitions is A062503, counted by A035457. %Y A351009 These compositions are counted by A032020 interspersed with 0's. %Y A351009 Taking singles instead of twins gives A349051. %Y A351009 This is the strict (distinct twins) version of A351010 and A351011. %Y A351009 A011782 counts compositions. %Y A351009 A085207 represents concatenation using standard compositions. %Y A351009 A333489 ranks anti-runs, complement A348612. %Y A351009 A345167 ranks alternating compositions, counted by A025047. %Y A351009 A351014 counts distinct runs in standard compositions, see A351015. %Y A351009 Cf. A003242, A027383, A035363, A088218, A106356, A122134, A238279, A344604, A349054, A351005, A351007. %Y A351009 Selected statistics of standard compositions: %Y A351009 - Length is A000120. %Y A351009 - Sum is A070939. %Y A351009 - Heinz number is A333219. %Y A351009 - Number of distinct parts is A334028. %Y A351009 Selected classes of standard compositions: %Y A351009 - Partitions are A114994, strict A333256. %Y A351009 - Multisets are A225620, strict A333255. %Y A351009 - Strict compositions are A233564. %Y A351009 - Constant compositions are A272919. %K A351009 nonn %O A351009 1,2 %A A351009 _Gus Wiseman_, Feb 03 2022