A351010 Numbers k such that the k-th composition in standard order is a concatenation of twins (x,x).
0, 3, 10, 15, 36, 43, 58, 63, 136, 147, 170, 175, 228, 235, 250, 255, 528, 547, 586, 591, 676, 683, 698, 703, 904, 915, 938, 943, 996, 1003, 1018, 1023, 2080, 2115, 2186, 2191, 2340, 2347, 2362, 2367, 2696, 2707, 2730, 2735, 2788, 2795, 2810, 2815, 3600, 3619
Offset: 1
Keywords
Examples
The terms together with their binary expansions and the corresponding compositions begin: 0: 0 () 3: 11 (1,1) 10: 1010 (2,2) 15: 1111 (1,1,1,1) 36: 100100 (3,3) 43: 101011 (2,2,1,1) 58: 111010 (1,1,2,2) 63: 111111 (1,1,1,1,1,1) 136: 10001000 (4,4) 147: 10010011 (3,3,1,1) 170: 10101010 (2,2,2,2) 175: 10101111 (2,2,1,1,1,1) 228: 11100100 (1,1,3,3) 235: 11101011 (1,1,2,2,1,1) 250: 11111010 (1,1,1,1,2,2) 255: 11111111 (1,1,1,1,1,1,1,1)
Crossrefs
The case of twins (binary weight 2) is A000120.
The Heinz numbers of these compositions are given by A000290.
All terms are evil numbers A001969.
A011782 counts integer compositions.
A351014 counts distinct runs in standard compositions.
Cf. A018819, A025047, A027383, A035457, A053738, A088218, A106356, A238279, A344604, A351012, A351015.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Strict compositions are A233564.
- Constant compositions are A272919.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],And@@EvenQ/@Length/@Split[stc[#]]&]
Comments