This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351011 #9 Feb 06 2022 23:11:09 %S A351011 0,3,10,36,43,58,136,147,228,235,528,547,586,676,698,904,915,2080, %T A351011 2115,2186,2347,2362,2696,2707,2788,2795,3600,3619,3658,3748,3770, %U A351011 8256,8323,8458,8740,8747,8762,9352,9444,9451,10768,10787,10826,11144,11155,14368 %N A351011 Numbers k such that the k-th composition in standard order has even length and alternately equal and unequal parts, i.e., all run-lengths equal to 2. %C A351011 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A351011 The terms together with their binary expansions and standard compositions begin: %e A351011 0: 0 () %e A351011 3: 11 (1,1) %e A351011 10: 1010 (2,2) %e A351011 36: 100100 (3,3) %e A351011 43: 101011 (2,2,1,1) %e A351011 58: 111010 (1,1,2,2) %e A351011 136: 10001000 (4,4) %e A351011 147: 10010011 (3,3,1,1) %e A351011 228: 11100100 (1,1,3,3) %e A351011 235: 11101011 (1,1,2,2,1,1) %e A351011 528: 1000010000 (5,5) %e A351011 547: 1000100011 (4,4,1,1) %e A351011 586: 1001001010 (3,3,2,2) %e A351011 676: 1010100100 (2,2,3,3) %e A351011 698: 1010111010 (2,2,1,1,2,2) %e A351011 904: 1110001000 (1,1,4,4) %e A351011 915: 1110010011 (1,1,3,3,1,1) %t A351011 stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A351011 Select[Range[0,1000],And@@(#==2&)/@Length/@Split[stc[#]]&] %Y A351011 The case of twins (binary weight 2) is A000120. %Y A351011 All terms are evil numbers A001969. %Y A351011 These compositions are counted by A003242 interspersed with 0's. %Y A351011 Partitions of this type are counted by A035457, any length A351005. %Y A351011 The Heinz numbers of these compositions are A062503. %Y A351011 Taking singles instead of twins gives A333489, complement A348612. %Y A351011 This is the anti-run case of A351010. %Y A351011 The strict case (distinct twins) is A351009, counted by A077957(n-2). %Y A351011 A011782 counts compositions. %Y A351011 A085207/A085208 represent concatenation of standard compositions. %Y A351011 A345167 ranks alternating compositions, counted by A025047. %Y A351011 A350355 ranks up/down compositions, counted by A025048. %Y A351011 A350356 ranks down/up compositions, counted by A025049. %Y A351011 A351014 counts distinct runs in standard compositions. %Y A351011 Cf. A008965, A018819, A027383, A032020, A035363, A088218, A106356, A122129, A122134, A238279, A351007. %Y A351011 Selected statistics of standard compositions: %Y A351011 - Length is A000120. %Y A351011 - Sum is A070939. %Y A351011 - Heinz number is A333219. %Y A351011 - Number of distinct parts is A334028. %Y A351011 Selected classes of standard compositions: %Y A351011 - Partitions are A114994, strict A333256. %Y A351011 - Multisets are A225620, strict A333255. %Y A351011 - Strict compositions are A233564. %Y A351011 - Constant compositions are A272919. %K A351011 nonn %O A351011 1,2 %A A351011 _Gus Wiseman_, Feb 03 2022