This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351017 #14 Feb 12 2022 13:41:22 %S A351017 1,2,2,6,6,10,22,26,38,54,114,130,202,266,386,702,870,1234,1702,2354, %T A351017 3110,5502,6594,9514,12586,17522,22610,31206,48630,60922,83734,111482, %U A351017 149750,196086,261618,336850,514810,631946,862130,1116654,1502982,1916530,2555734,3242546 %N A351017 Number of binary words of length n with all distinct run-lengths. %F A351017 a(n>0) = 2 * A032020(n). %e A351017 The a(0) = 1 through a(6) = 22 words: %e A351017 {} 0 00 000 0000 00000 000000 %e A351017 1 11 001 0001 00001 000001 %e A351017 011 0111 00011 000011 %e A351017 100 1000 00111 000100 %e A351017 110 1110 01111 000110 %e A351017 111 1111 10000 001000 %e A351017 11000 001110 %e A351017 11100 001111 %e A351017 11110 011000 %e A351017 11111 011100 %e A351017 011111 %e A351017 100000 %e A351017 100011 %e A351017 100111 %e A351017 110000 %e A351017 110001 %e A351017 110111 %e A351017 111001 %e A351017 111011 %e A351017 111100 %e A351017 111110 %e A351017 111111 %t A351017 Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Length/@Split[#]&]],{n,0,10}] %o A351017 (Python) %o A351017 from itertools import groupby, product %o A351017 def adrl(s): %o A351017 runlens = [len(list(g)) for k, g in groupby(s)] %o A351017 return len(runlens) == len(set(runlens)) %o A351017 def a(n): %o A351017 if n == 0: return 1 %o A351017 return 2*sum(adrl("1"+"".join(w)) for w in product("01", repeat=n-1)) %o A351017 print([a(n) for n in range(20)]) # _Michael S. Branicky_, Feb 08 2022 %Y A351017 Using binary expansions instead of words gives A032020, ranked by A044813. %Y A351017 The version for partitions is A098859. %Y A351017 The complement is counted by twice A261982. %Y A351017 The version for compositions is A329739, for runs A351013. %Y A351017 For runs instead of run-lengths we have A351016, twice A351018. %Y A351017 The version for patterns is A351292, for runs A351200. %Y A351017 A000120 counts binary weight. %Y A351017 A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375. %Y A351017 A005811 counts runs in binary expansion. %Y A351017 A011782 counts integer compositions. %Y A351017 A242882 counts compositions with distinct multiplicities. %Y A351017 A297770 counts distinct runs in binary expansion. %Y A351017 A325545 counts compositions with distinct differences. %Y A351017 A329767 counts binary words by runs-resistance. %Y A351017 A351014 counts distinct runs in standard compositions. %Y A351017 A351204 counts partitions where every permutation has all distinct runs. %Y A351017 A351290 ranks compositions with all distinct runs. %Y A351017 Cf. A003242, A098504, A106356, A116608, A175413, A233564, A238130 or A238279, A328592, A334028, A350952. %K A351017 nonn %O A351017 0,2 %A A351017 _Gus Wiseman_, Feb 07 2022 %E A351017 a(25)-a(32) from _Michael S. Branicky_, Feb 08 2022 %E A351017 More terms from _David A. Corneth_, Feb 08 2022 using data from A032020