This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351018 #16 Feb 12 2022 20:28:47 %S A351018 1,1,2,3,6,9,18,27,46,77,122,191,326,497,786,1207,1942,2905,4498,6703, %T A351018 10574,15597,23754,35043,52422,78369,115522,169499,248150,360521, %U A351018 532466,768275,1116126,1606669,2314426,3301879,4777078,6772657,9677138,13688079,19406214 %N A351018 Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts. %C A351018 Also the number of binary words of length n starting with 1 and having all distinct runs (ranked by A175413, counted by A351016). %H A351018 Andrew Howroyd, <a href="/A351018/b351018.txt">Table of n, a(n) for n = 0..1000</a> %H A351018 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a> %F A351018 a(n>0) = A351016(n)/2. %F A351018 G.f.: Sum_{k>=0} floor(k/2)! * ceiling(k/2)! * ([y^floor(k/2)] P(x,y)) * ([y^ceiling(k/2)] P(x,y)), where P(x,y) = Product_{k>=1} 1 + y*x^k. - _Andrew Howroyd_, Feb 11 2022 %e A351018 The a(1) = 1 through a(6) = 18 compositions: %e A351018 (1) (2) (3) (4) (5) (6) %e A351018 (1,1) (1,2) (1,3) (1,4) (1,5) %e A351018 (2,1) (2,2) (2,3) (2,4) %e A351018 (3,1) (3,2) (3,3) %e A351018 (1,1,2) (4,1) (4,2) %e A351018 (2,1,1) (1,1,3) (5,1) %e A351018 (1,2,2) (1,1,4) %e A351018 (2,2,1) (1,2,3) %e A351018 (3,1,1) (1,3,2) %e A351018 (2,1,3) %e A351018 (2,3,1) %e A351018 (3,1,2) %e A351018 (3,2,1) %e A351018 (4,1,1) %e A351018 (1,1,2,2) %e A351018 (1,2,2,1) %e A351018 (2,1,1,2) %e A351018 (2,2,1,1) %t A351018 Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}] %o A351018 (PARI) P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n)); %o A351018 seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ _Andrew Howroyd_, Feb 11 2022 %Y A351018 The case of partitions is A000726. %Y A351018 The version for run-lengths instead of runs is A032020. %Y A351018 These words are ranked by A175413. %Y A351018 A005811 counts runs in binary expansion. %Y A351018 A011782 counts integer compositions. %Y A351018 A044813 lists numbers whose binary expansion has distinct run-lengths. %Y A351018 A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740. %Y A351018 A116608 counts compositions by number of distinct parts. %Y A351018 A238130 and A238279 count compositions by number of runs. %Y A351018 A242882 counts compositions with distinct multiplicities. %Y A351018 A297770 counts distinct runs in binary expansion. %Y A351018 A325545 counts compositions with distinct differences. %Y A351018 A329738 counts compositions with equal run-lengths. %Y A351018 A329744 counts compositions by runs-resistance. %Y A351018 A351014 counts distinct runs in standard compositions. %Y A351018 Counting words with all distinct runs: %Y A351018 - A351013 = compositions, for run-lengths A329739, ranked by A351290. %Y A351018 - A351016 = binary words, for run-lengths A351017. %Y A351018 - A351200 = patterns, for run-lengths A351292. %Y A351018 - A351202 = permutations of prime factors. %Y A351018 Cf. A003242, A025047, A098504, A098859, A106356, A212322, A328592, A329740, A334028, A349054, A350952, A351205. %K A351018 nonn %O A351018 0,3 %A A351018 _Gus Wiseman_, Feb 09 2022 %E A351018 Terms a(21) and beyond from _Andrew Howroyd_, Feb 11 2022