cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351019 Minimal permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.

This page as a plain text file.
%I A351019 #23 Oct 13 2022 06:50:26
%S A351019 1,1,5,36,480,9991,296913,12099604,637590728,43090005714,
%T A351019 3550491371994,359557627057876
%N A351019 Minimal permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.
%H A351019 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A351019%2B20.sage">A351019+20.sage</a>
%H A351019 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A351019 a(3) = 36:
%e A351019     2    1    3
%e A351019     1    2    1
%e A351019     3    1    2
%e A351019 a(4) = 480:
%e A351019     2    1    3    4
%e A351019     1    2    1    3
%e A351019     3    1    2    1
%e A351019     4    3    1    2
%e A351019 a(5) = 9991:
%e A351019     3    1    2    4    5
%e A351019     1    3    1    2    4
%e A351019     2    1    3    1    2
%e A351019     4    2    1    3    1
%e A351019     5    4    2    1    3
%o A351019 (Python)
%o A351019 from itertools import permutations
%o A351019 from sympy import Matrix
%o A351019 def A351019(n): return 1 if n == 0 else min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))) # _Chai Wah Wu_, Jan 31 2022
%Y A351019 Cf. A204235, A307783, A350937, A351020 (maximal).
%K A351019 nonn,hard,more
%O A351019 0,3
%A A351019 _Stefano Spezia_, Jan 29 2022
%E A351019 a(9) from _Alois P. Heinz_, Jan 31 2022
%E A351019 a(10)-a(11) from _Lucas A. Brown_, Sep 06 2022