This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351020 #21 Oct 13 2022 06:49:47 %S A351020 1,1,5,64,1650,66731,3968777,323676148,34890266414,4780256317586, %T A351020 814873637329516,168491370685328792 %N A351020 Maximal permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n. %H A351020 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A351019%2B20.sage">A351019+20.sage</a> %H A351020 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A351020 a(3) = 64: %e A351020 2 3 1 %e A351020 3 2 3 %e A351020 1 3 2 %e A351020 a(4) = 1650: %e A351020 3 4 2 1 %e A351020 4 3 4 2 %e A351020 2 4 3 4 %e A351020 1 2 4 3 %e A351020 a(5) = 66731: %e A351020 3 5 4 2 1 %e A351020 5 3 5 4 2 %e A351020 4 5 3 5 4 %e A351020 2 4 5 3 5 %e A351020 1 2 4 5 3 %o A351020 (Python) %o A351020 from itertools import permutations %o A351020 from sympy import Matrix %o A351020 def A351020(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))) # _Chai Wah Wu_, Jan 31 2022 %Y A351020 Cf. A204235, A307783, A350938, A351019 (minimal). %K A351020 nonn,hard,more %O A351020 0,3 %A A351020 _Stefano Spezia_, Jan 29 2022 %E A351020 a(9) from _Alois P. Heinz_, Jan 31 2022 %E A351020 a(10)-a(11) from _Lucas A. Brown_, Sep 06 2022