This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351021 #19 Oct 13 2022 06:48:54 %S A351021 1,2,13,166,4009,169469,10949857,1078348288,138679521597, %T A351021 24402542896843,5348124003487173 %N A351021 Minimal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers. %H A351021 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A351021%2B2.sage">A351021+2.sage</a> %H A351021 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A351021 a(3) = 166: %e A351021 3 2 5 %e A351021 2 3 2 %e A351021 5 2 3 %e A351021 a(4) = 4009: %e A351021 3 2 5 7 %e A351021 2 3 2 5 %e A351021 5 2 3 2 %e A351021 7 5 2 3 %e A351021 a(5) = 169469: %e A351021 5 2 3 7 11 %e A351021 2 5 2 3 7 %e A351021 3 2 5 2 3 %e A351021 7 3 2 5 2 %e A351021 11 7 3 2 5 %o A351021 (Python) %o A351021 from itertools import permutations %o A351021 from sympy import Matrix, prime %o A351021 def A351021(n): return 1 if n == 0 else min(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 31 2022 %Y A351021 Cf. A348891, A350939, A350955, A351022 (maximal). %K A351021 nonn,hard,more %O A351021 0,2 %A A351021 _Stefano Spezia_, Jan 29 2022 %E A351021 a(9) and a(10) from _Lucas A. Brown_, Sep 04 2022