This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351022 #16 Oct 13 2022 06:49:14 %S A351022 1,2,13,289,13814,1795898,265709592,70163924440,20610999526800, %T A351022 9097511018219760,6845834489829830144 %N A351022 Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers. %H A351022 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A351021%2B2.sage">A351021+2.sage</a> %H A351022 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A351022 a(3) = 289: %e A351022 3 5 2 %e A351022 5 3 5 %e A351022 2 5 3 %e A351022 a(4) = 13814: %e A351022 5 7 3 2 %e A351022 7 5 7 3 %e A351022 3 7 5 7 %e A351022 2 3 7 5 %e A351022 a(5) = 1795898: %e A351022 5 11 7 3 2 %e A351022 11 5 11 7 3 %e A351022 7 11 5 11 7 %e A351022 3 7 11 5 11 %e A351022 2 3 7 11 5 %o A351022 (Python) %o A351022 from itertools import permutations %o A351022 from sympy import Matrix, prime %o A351022 def A351022(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 31 2022 %Y A351022 Cf. A350940, A350956, A351021 (minimal). %K A351022 nonn,hard,more %O A351022 0,2 %A A351022 _Stefano Spezia_, Jan 29 2022 %E A351022 a(9) and a(10) from _Lucas A. Brown_, Sep 04 2022