cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351022 Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.

This page as a plain text file.
%I A351022 #16 Oct 13 2022 06:49:14
%S A351022 1,2,13,289,13814,1795898,265709592,70163924440,20610999526800,
%T A351022 9097511018219760,6845834489829830144
%N A351022 Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
%H A351022 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A351021%2B2.sage">A351021+2.sage</a>
%H A351022 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e A351022 a(3) = 289:
%e A351022     3    5    2
%e A351022     5    3    5
%e A351022     2    5    3
%e A351022 a(4) = 13814:
%e A351022     5    7    3    2
%e A351022     7    5    7    3
%e A351022     3    7    5    7
%e A351022     2    3    7    5
%e A351022 a(5) = 1795898:
%e A351022     5   11    7    3    2
%e A351022    11    5   11    7    3
%e A351022     7   11    5   11    7
%e A351022     3    7   11    5   11
%e A351022     2    3    7   11    5
%o A351022 (Python)
%o A351022 from itertools import permutations
%o A351022 from sympy import Matrix, prime
%o A351022 def A351022(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,n+1))) # _Chai Wah Wu_, Jan 31 2022
%Y A351022 Cf. A350940, A350956, A351021 (minimal).
%K A351022 nonn,hard,more
%O A351022 0,2
%A A351022 _Stefano Spezia_, Jan 29 2022
%E A351022 a(9) and a(10) from _Lucas A. Brown_, Sep 04 2022