This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351041 #22 Feb 13 2022 09:23:34 %S A351041 7,9,12,13,15,16,18,18,19,21,22,22,24,24,25,26,27,27,28,28,30,31,31, %T A351041 31,32,33,33,34,35,35,36,36,37,37,37 %N A351041 Minimal number of steps for a Racetrack car (using Moore neighborhood) to go around a circle of radius n. %C A351041 The car moves according to the rules of the game of Racetrack, i.e., if P, Q, and R are three successive positions of the car, both coordinates of the second difference (acceleration vector) P - 2Q + R must be 1, 0, or -1. The car starts with zero velocity at a point (x,0) for some integer x >= n, and finishes when it passes, or lands on, the positive x-axis after a complete counterclockwise lap around the origin. The line segments between successive positions must be outside or on the circle with center in (0,0) and radius n. %H A351041 Pontus von Brömssen, <a href="/A351041/a351041.svg">Examples of optimal trajectories in A351041 for 1 <= n <= 8</a>. %H A351041 Wikipedia, <a href="https://en.wikipedia.org/wiki/Racetrack_(game)">Racetrack</a> %F A351041 a(n) = min {k >= 6; A351349(k)/A351350(k) >= n^2}. %F A351041 a(n) <= A351042(n). %F A351041 a(n) >= A027434(n) + A027434(2*n) + A002024(n). This can be seen by looking at the y-coordinate only: First, the car must go up to at least y = n and reduce the speed in the y-direction to zero in order to turn downwards; this requires at least A027434(n) steps. Then down to y = -n or below with speed reduced to zero; this requires at least A027434(2*n) steps. Finally, up to at least y = 0 (not necessarily reducing the speed); this requires at least A002024(n) steps. %F A351041 It appears that a(n) = A027434(n) + A027434(2*n) + A002024(n) + 1 if n is a triangular number (A000217), otherwise a(n) = A027434(n) + A027434(2*n) + A002024(n). %e A351041 The following diagrams show examples of optimal trajectories for n = 1, 2, 3. The origin is marked with an asterisk. %e A351041 . %e A351041 a(1) = 7: %e A351041 . 2 . 1 . . %e A351041 3 . * . 0 7 %e A351041 . 5 . 6 . . %e A351041 (The car stands still on the fourth step.) %e A351041 . %e A351041 a(2) = 9: %e A351041 . 3 . 2 . . %e A351041 4 . . . 1 . %e A351041 . . * . 0 9 %e A351041 5 . . . 8 . %e A351041 . 6 . 7 . . %e A351041 . %e A351041 a(3) = 12: %e A351041 . . . 4 3 . . . . %e A351041 . 5 . . . . 2 . . %e A351041 . . . . . . . . . %e A351041 6 . . . . . . 1 . %e A351041 7 . . . * . . 0 12 %e A351041 . . . . . . . . . %e A351041 . 8 . . . . . 11 . %e A351041 . . . 9 . 10 . . . %Y A351041 Cf. A000217, A002024, A027434, A351042, A351349, A351350. %K A351041 nonn,more %O A351041 1,1 %A A351041 _Pontus von Brömssen_, Jan 29 2022