This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351042 #20 Feb 13 2022 09:23:29 %S A351042 9,12,13,16,17,19,21,22,23,24,25,26,27,28,29,30,31,32,32,32,34,34,36, %T A351042 36,37 %N A351042 Minimal number of steps for a Racetrack car (using von Neumann neighborhood) to go around a circle of radius n. %C A351042 The car moves according to the rules of the game of Racetrack with von Neumann neighborhood, i.e., if P, Q, and R are three successive positions of the car, one coordinate of the second difference (acceleration vector) P - 2Q + R must be 0, and the other 1, 0, or -1. The car starts with zero velocity at a point (x,0) for some integer x >= n, and finishes when it passes, or lands on, the positive x-axis after a complete counterclockwise lap around the origin. The line segments between successive positions must be outside or on the circle with center in (0,0) and radius n. %H A351042 Pontus von Brömssen, <a href="/A351042/a351042.svg">Examples of optimal trajectories in A351042 for 1 <= n <= 8</a>. %H A351042 Wikipedia, <a href="https://en.wikipedia.org/wiki/Racetrack_(game)">Racetrack</a> %F A351042 a(n) = min {k >= 8; A351351(k)/A351352(k) >= n^2}. %F A351042 a(n) >= A351041(n). %e A351042 The following diagrams show examples of optimal trajectories for n = 1, 2, 3. The origin is marked with an asterisk. %e A351042 . %e A351042 a(1) = 9: %e A351042 . 3 2 . . %e A351042 4 . . 1 . %e A351042 5 . * 0 9 %e A351042 . 6 7 8 . %e A351042 . %e A351042 a(2) = 12: %e A351042 . 4 3 2 . . %e A351042 5 . . . 1 . %e A351042 6 . * . 0 12 %e A351042 7 . . . 11 . %e A351042 . 8 9 10 . . %e A351042 . %e A351042 a(3) = 13: %e A351042 . . . 4 . 3 . . . . %e A351042 . 5 . . . . . 2 . . %e A351042 6 . . . . . . . 1 . %e A351042 7 . . . * . . . 0 13 %e A351042 8 . . . . . . . . . %e A351042 . 9 . . . . . 12 . . %e A351042 . . . 10 . 11 . . . . %Y A351042 Cf. A027434, A351041, A351043, A351351, A351352. %K A351042 nonn,more %O A351042 1,1 %A A351042 _Pontus von Brömssen_, Jan 30 2022