A351063 Sums of four perfect powers with different exponents: m = a^x + b^y + c^z + d^t with a > 0, b > 0, c > 0, d > 0, x > 1, y > 1, z > 1, t > 1 and x, y, z, t are all different, with m not representable with fewer such addends.
7, 14, 19, 22, 30, 35, 39, 46, 54, 61, 67, 70, 78, 87, 94, 99, 103, 110, 111, 115, 119, 120, 139, 147, 167, 179, 183, 188, 195, 199, 211, 230, 237, 303, 318, 331, 335, 339, 342, 355, 399, 410, 419, 421, 429, 436, 438, 454, 461, 467, 470, 477, 483, 494, 510, 534
Offset: 1
Keywords
Examples
7 is a term, as 7 = 2^2 + 1^3 + 1^4 + 1^5 (considering minimal possible exponents for bases equal to 1). 14 is a term, as 14 = 2^2 + 2^3 + 1^4 + 1^5 (idem). 195 is a term, as 195 = 7^2 + 1^3 + 3^4 + 2^6 or 7^2 + 4^3 + 3^4 + 1^5 or 9^2 + 1^3 + 3^4 + 2^5 (idem).
Links
- E. Garista and A. Zanoni, Somme di potenze con esponenti diversi, MatematicaMente, 317 (2024), 1-2.
- E. Garista and A. Zanoni, Sums of positive integer powers with unlike exponents, Armenian Journal of Mathematics, 17 No. 3 (2025), 1-11.
- Alberto Zanoni, Sums of different powers.
Extensions
Missing terms inserted by Alberto Zanoni, Jan 08 2024
Comments