This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351067 #13 Feb 02 2022 15:09:15 %S A351067 0,3,11,52,291,1681,11506,89347 %N A351067 Number of integers between the n-th and the (n+1)-th primorial such that the maximal exponent in their prime factorization is larger than the maximal digit in their primorial base expansion. %C A351067 a(n) is the number of terms of A350075 in range A002110(n) .. A002110(1+n)-1. %C A351067 The ratio a(n) / A061720(n) develops as: %C A351067 n = 1: 0 / 4 = 0 %C A351067 2: 3 / 24 = 0.125 %C A351067 3: 11 / 180 = 0.061111... %C A351067 4: 52 / 2100 = 0.247619... %C A351067 5: 291 / 27720 = 0.010498... %C A351067 6: 1681 / 480480 = 0.003499... %C A351067 7: 11506 / 9189180 = 0.001252... %C A351067 8: 89347 / 213393180 = 0.000419... %H A351067 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A351067 a(n) = Sum_{k=A002110(n) .. A002110(1+n)-1} [A328114(k) < A051903(k)], where [ ] is the Iverson bracket. %F A351067 For all n, a(n) < A351069(n). %e A351067 Between A002110(2) = 6 and A002110(3) = 30, there are exactly three numbers that satisfy the condition: 8, 9, 16, therefore a(2) = 3. %o A351067 (PARI) %o A351067 A002110(n) = prod(i=1,n,prime(i)); %o A351067 A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); %o A351067 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A351067 isA350075(n) = (A051903(A276086(n)) < A051903(n)); %o A351067 A351067(n) = sum(k=A002110(n),A002110(1+n)-1,isA350075(k)); %Y A351067 Cf. A002110, A051903, A276086, A328114, A350075, A351068 (partial sums), A351069. %Y A351067 Cf. also A327969. %K A351067 nonn,more %O A351067 1,2 %A A351067 _Antti Karttunen_, Feb 02 2022