This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351086 #11 Feb 04 2022 16:09:26 %S A351086 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,5,5,1,1,1,1,1,1,1, %T A351086 1,3,1,1,1,1,1,1,1,1,1,1,5,1,1,1,5,5,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1,1, %U A351086 1,1,1,1,1,1,1,5,5,3,1,1,1,1,1,1,1,1,5,1,35,1,1,1,1,1,49,3,1,1,7,1,7,1,7 %N A351086 a(n) = gcd(A003415(n), A328572(n)), where A003415 is the arithmetic derivative and A328572 converts the primorial base expansion of n into its prime product form, but with 1 subtracted from all nonzero digits. %H A351086 Antti Karttunen, <a href="/A351086/b351086.txt">Table of n, a(n) for n = 0..65537</a> %H A351086 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A351086 a(n) = gcd(A003415(n), A328572(n)). %F A351086 a(n) = gcd(A327858(n), A345000(n)). %o A351086 (PARI) %o A351086 A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 %o A351086 A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); }; %o A351086 A351086(n) = gcd(A003415(n), A328572(n)); %o A351086 (PARI) %o A351086 A351086(n) = { my(m=1, p=2, orgn=A003415(n)); while(n, if(n%p, m *= (p^min((n%p)-1, valuation(orgn, p)))); n = n\p; p = nextprime(1+p)); (m); }; %Y A351086 Cf. A003415, A276086, A327858, A345000, A351084, A351085. %K A351086 nonn,easy %O A351086 0,22 %A A351086 _Antti Karttunen_, Feb 03 2022