This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351104 #29 Mar 09 2022 00:40:20 %S A351104 1,12,28,98,386,943,1494,1680,2987,7083,57346,252548,331778,524289, %T A351104 596310,2886352,3247146,3264428,4585418,5158596,5772712,13019668, %U A351104 18341744,24455681,98041684,136696632,271114753,361486064,406672385,481981441,711611184,722067240 %N A351104 Numbers that begin a record-length run of consecutive numbers having the same Collatz trajectory length. %C A351104 It appears that this sequence is infinite. %C A351104 For every record number of consecutive identical terms in A006577, the index of the first of those consecutive terms is a term of this sequence. %C A351104 This sequence is interesting because when A006577 is graphed on a scatter plot, it is immediately obvious that there are many runs of terms having the same value. %e A351104 a(4)=98 since the length of the Collatz trajectory of each number from 98 through 102 is of length 25 and this is the fourth record length. %e A351104 From _Jon E. Schoenfield_, Feb 01 2022: (Start) %e A351104 trajectory numbers in run run %e A351104 n length (1st is a(n)) length %e A351104 -- ---------- -------------- ------ %e A351104 1 1 1 1 %e A351104 2 9 12, 13 2 %e A351104 3 18 28, 29, 30 3 %e A351104 4 25 98 ... 102 5 %e A351104 5 120 386 ... 391 6 %e A351104 6 36 943 ... 949 7 %e A351104 7 47 1494 ... 1501 8 %e A351104 8 42 1680 ... 1688 9 %e A351104 9 48 2987 ... 3000 14 %e A351104 10 57 7083 ... 7099 17 %e A351104 (End) %o A351104 (Python) %o A351104 import numpy as np %o A351104 def find_records(m): %o A351104 l=np.array([0]+[-1 for i in range(m-1)]) %o A351104 for n in range(len(l)): %o A351104 path=[n+1] %o A351104 while path[-1]>m or l[path[-1]-1]==-1: %o A351104 if path[-1]%2==0: %o A351104 path.append(path[-1]//2) %o A351104 else: %o A351104 path.append(path[-1]*3+1) %o A351104 path.reverse() %o A351104 for i in range(1, len(path)): %o A351104 if path[i]<=m: %o A351104 l[path[i]-1]=l[path[0]-1]+i %o A351104 ciclr=[] %o A351104 c=1 %o A351104 lsteps=0 %o A351104 record=0 %o A351104 for n in range(1, len(l)): %o A351104 if l[n]==lsteps: %o A351104 c+=1 %o A351104 else: %o A351104 if c>record: %o A351104 record=c %o A351104 ciclr.append(n-c+1) %o A351104 c=1 %o A351104 lsteps=l[n] %o A351104 return ciclr %o A351104 print(", ".join([str(i) for i in find_records(1000000)])) %Y A351104 For length of run see A351224. %K A351104 nonn %O A351104 1,2 %A A351104 _Nathan John Eaves_, Jan 31 2022