cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351120 Pair chromatic number of a cycle graph with n vertices.

Original entry on oeis.org

6, 6, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14
Offset: 3

Views

Author

Allan Bickle, Feb 01 2022

Keywords

Comments

The pair chromatic number of a graph G is the smallest number of colors for which G has a coloring where every vertex has two distinct colors, no adjacent vertices have a common color, and no pair of colors is repeated.
There is no pair 5-coloring for cycles of length 3, 4, 7, or 10 since the Petersen graph does not contain cycles of these lengths.

Examples

			The colorings for (broken) cycles with orders 3 through 9 are shown below.
  -12-34-56-
  -12-34-15-36-
  -12-34-51-23-45-
  -12-34-15-32-14-35-
  -12-34-56-13-24-35-46-
  -12-34-15-23-14-25-13-45-
  -12-34-15-32-14-25-13-24-35-
		

Crossrefs

Programs

  • Mathematica
    A351120[n_]:=If[n<11,{6,6,5,5,6,5,5,6}[[n-2]],Ceiling[(1+Sqrt[1+8n])/2]];Array[A351120,100,3] (* Paolo Xausa, Nov 30 2023 *)

Formula

a(n) = ceiling((1 + sqrt(1 + 8*n))/2) for n > 10.